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Abstract

We show that classical mechanics can be recovered as the high-entropy limit of quantum
mechanics. That is, the high entropy masks quantum effects, and mixed states of high
enough entropy can be approximated with classical distributions. The mathematical
limit ħh→ 0 can be reinterpreted as setting the zero entropy of pure states to −∞, in the
same way that non-relativistic mechanics can be recovered mathematically with c→∞.
Physically, these limits are more appropriately defined as S≫ 0 and v ≪ c. Both limits
can then be understood as approximations independently of what circumstances allow
those approximations to be valid. Consequently, the limit presented is independent of
possible underlying mechanisms and of what interpretation is chosen for both quantum
states and entropy.
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1 Introduction20

The goal of this paper, summarized in Fig. 1, is to show that classical mechanics is the high-21

entropy limit of quantum mechanics, much in the same way that it is the low-speed limit of22

relativistic mechanics.23
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Figure 1: The amended four-quadrant picture often used to compare the theories.
The distinction between classical and quantum physics is not size, but entropy. Small
systems in states of high entropy (e.g. a few molecules at high temperature) can be
described by classical mechanics; large systems in states of low entropy (e.g. systems
entangled over long distances) cannot be described by classical mechanics.

Physically, as we take states at higher and higher entropy, the quantum features become less24

and less pronounced to the point that classical mechanics becomes a good approximation. This25

limit is therefore independent of what interpretation one may give to either quantum mechan-26

ics or entropy, and from the reason, the mechanism, that makes a high-entropy description27

suitable. Quite literally, quantum mechanics is needed exactly when we need more precise28

(i.e. low-entropy) descriptions. This brings the classical limit in line with the non-relativistic29

limit, where the low-speed limit is seen as unrelated to discussions about the nature of space-30

time and no one tries to find a reason, a mechanism, as to why speeds become low in certain31

regimes.32

Mathematically, it is common to see both limits as group contractions. This too can be33

given a physically meaningful interpretation. The low-speed limit is mathematically recovered34

by taking the highest possible speed and setting it to infinity. This way, all finite velocities are35

small compared to the highest possible speed. This corresponds to taking c→∞. Conversely,36

the high-entropy limit is mathematically recovered by taking the lowest possible entropy, zero37

in quantum mechanics, to minus infinity. Note that entropy is the logarithm for the count of38

states, which is quantified in units of ħh. Therefore, taking ħh → 0 is equivalent to setting the39

entropy for pure states to minus infinity. This way, all finite entropies are large compared to the40

lowest possible entropy. In a nutshell, this is what we will show in section 4. Since physically41

it does not make sense to take limits of physical constants, c →∞ should be understood as42

v≪ c, ħh→ 0 should be understood as S≫ 0.43

The key insight is that high entropy is the one and only requirement. We do not re-44
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quire a particular interpretation of quantum mechanics, of entropy or a particular mechanism45

responsible for the high entropy. Any will do.146

The paper is structured as follows. In the second section we give intuitive insights as to47

why the limit makes sense on physical grounds. We will argue that to produce quantum effects48

one does effectively prepare, in one way or another, states at low entropy. We will study the49

relationship between uncertainty and entropy in both classical and quantum mechanics, and50

see how closely these coincide even with an uncertainty of just a few ħh. Lastly, we will see51

how quantum states at high entropy become closer to each other, and how uncertainty on52

quantum features can become equivalent to uncertainty on classical features. This aliasing is53

what makes the limit possible. In the third section we will give an example of how traditional54

limits can be reinterpreted as high-entropy limits. In the fourth section we will show how55

the high-entropy limit, mathematically, is like taking ħh→ 0. We will study entropy-increasing56

transformations in classical mechanics and see that these are stretching operations over phase57

space. We then find quantum analogues and note that their effect is to rescale the commutator58

between position and momentum by a constant. Mathematically, this can be understood as59

rescaling ħh. Finally, to give a more physically meaningful insight to the limit, we look at how60

the Wigner function changes as the phase space is stretched and the entropy increases.61

2 High entropy and classical states62

Since we aim to provide an approach to the classical limit that makes intuitive sense to all those63

that routinely work with quantum systems, we will start with a few qualitative considerations64

that hint at the connection between classical mechanics and high entropy.65

2.1 Producing quantum states66

One of the experimental challenges in quantum mechanics is producing states that are “quan-67

tum enough” to exhibit quantum properties. What we want to show that all these problems68

can ultimately be understood as reducing the entropy of the initial state.69

Coherence is probably one of the direct and most important properties. It has been shown70

that coherence can be maintained over long distances and among a large number of con-71

stituents, meaning that quantum systems are not necessarily small or made of few compo-72

nents. However, it is also established how coherence can be quickly lost through interaction73

with the environment, through decoherence [1, 2]. Since decoherence increases the entropy74

of the system, it represents one mechanism to reach the high-entropy limit. This is in line with75

our result.76

In experimental practice, many quantum effects (e.g. superconductivity, topological insu-77

lators, quantum Hall effect, ...) are harder or impossible to achieve at high temperature. The78

thermal noise can break the coherence of the system. Note that entropy is a monotonic func-79

tion of temperature, meaning that decreasing temperature means decreasing entropy of the80

system. This is in line with our result.81

Some quantum effects can be replicated at higher temperature given a high pressure. This82

is the case, for example, in some superconductive materials [3]. High pressure corresponds to83

low entropy, which is in line with our result. Along the same lines, white dwarfs and neutron84

stars exhibit quantum effects at high pressure, despite high temperatures.85

1The only requirement for entropy is that it matches the experimentally measured one and that its maximization
corresponds to the correct experimental quantities. In this vein, the Shannon/Gibbs entropy of classical mechanics
and the von Neumann entropy of quantum mechanics are simply the tools we use to make predictions within the
respective theories. The Boltzmann entropy coincides with the Shannon/Gibbs entropy for a uniform distribution.
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To produce Bose-Einstein condensates, one needs a high density in phase space, which86

means both high spatial density (to decrease the position spread) and low temperature (to87

decrease the momentum spread). The phase space density (PSD) is directly related to entropy88

and dimensionality, as exemplified by the famous Sackur-Tetrode equation for the entropy of89

the ideal gas. This, again, is in line with our result.90

For a trapped condensate, the PSD at the center and entropy S are related by PSD =91

e5/2+γ−S/N , where N is the number of particles and γ is the virial coefficient for the trapping92

potential [4]. This has been used experimentally to condense at constant entropy, by chang-93

ing the shape of the potential [5]. Note that, however, the system is inhomogeneous, so the94

condensation happens because entropy is transferred from one part of the system to the other.95

For thermodynamic systems in equilibrium, entropy can be calculated directly based on oc-96

cupation of the quantum states of the system. For high temperatures, the occupations are all97

small and classical statistical mechanics applies. Quantum effects related to indistinguishabil-98

ity are found whenever occupations approach unity. The entropy per particle drops in the same99

limit, again in line with our result. Note, however, that while infinite entropy corresponds to100

infinite temperature, the reverse is not necessarily true. In systems with finitely many possible101

states we can find the stationary point of S as a function of E for which 1/T = ∂ S/∂ E is zero.102

This stationary point represents the maximum entropy reachable by the system, and therefore103

there is no high entropy limit. This is exactly the case where temperature can have negative104

values. Given that the entropy is a concave function of the energy, systems that admit a clas-105

sical description are exactly those for which no such stationary point exists and temperature106

cannot be negative or infinite.107

2.2 Uncertainty from entropy108

Another qualitative argument that shows the link between high entropy and classical me-109

chanics comes from the relationship between entropy and uncertainty for a single degree of110

freedom.111

In both classical and quantum mechanics, Gaussian states maximize entropy for a single112

independent degree of freedom at a fixed uncertainty or, equivalently, minimize uncertainty113

at fixed entropy. This means that, if we fix the entropy S, we will have an uncertainty relation-114

ship [6]115

∆x∆p ≥ Σ(S). (1)

The specific value of the uncertainty Σ will depend on the entropy and on whether we are116

using classical or quantum mechanics, though the relationship will always be saturated by117

Gaussian states with no correlation between x and p.118

In classical mechanics, the relationship between entropy and uncertainty for Gaussian119

states is [7,8]120

SC(Σ) = ln
�

2πe
Σ

h

�

= ln
�

Σ

ħh

�

+ 1. (2)

In quantum mechanics it is [9]121

SQ(Σ) =
�

Σ

ħh
+

1
2

�

ln
�

Σ

ħh
+

1
2

�

−
�

Σ

ħh
−

1
2

�

ln
�

Σ

ħh
−

1
2

�

. (3)

In Fig. 2 we can see that the classical and quantum cases are very close even when the122

uncertainty is just a few units of ħh. Things diverge at about two units of ħh: in quantum123

mechanics the entropy decreases faster and reaches zero at ħh/2, the bound for the Heisenberg124

uncertainty principle; classical mechanics reaches zero entropy for ħh/e, and then continues in125

the negative region.126
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Figure 2: Entropy S in nats for a Gaussian state as a function of uncertainty Σ, mea-
sured in units of ħh. In solid blue, the classical case S = ln(Σ) + 1. In dotted red,
the quantum case S =

�
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. In dashed green the
difference between the two.

The convergent prediction at high entropy together with the divergent prediction at low127

entropy, together with negative values for the classical case, reinforces the idea that quantum128

mechanics is required at low entropy much like relativity is required at high speeds.129

2.3 Entropic aliasing130

Note that, in our approach, the mechanism that increases the entropy is irrelevant: any will do.131

The intrinsic geometry of quantum mixed states makes uncertainty over classical or quantum132

properties look the same. It is this aliasing of different preparations that drives the classical133

limit, as we can see even in a standard two-slit experiment setup.134

In the simplest case, we can imagine the particle either passing through the left or right135

slit, which corresponds to the two pure states |L and |R . These identify a two-state system,136

a qubit. We can now imagine equal superpositions of the two states, 1p
2
|L + 1p

2
e−ıθ |R where137

θ is the difference in phase between the two components. If θ is zero, we have the state138

|+ = 1p
2
|L + 1p

2
|R and the resulting interference pattern will have a peak in the middle of139

the screen. If θ is π, we have the state |− = 1p
2
|L + e−ıπ 1p

2
|R and the resulting interference140

pattern will have a valley in the middle of the screen.141

As expected, |+ cannot be understood as a probability distribution, as a mixture, over |L142

and |R . The interference pattern, the quantum feature, cannot be understood as a classical143

distribution over a path, a classical feature. However, an equal mixture of |+ and |− is the144

maximally mixed state, which is equal to an equal mixture of |L and |R . That is, the case145

where we randomize the phase is indistinguishable from the case where we randomize the146

path. In other words, uncertainty over a quantum feature behaves like uncertainty over a147

classical feature, regardless of the source of the uncertainty.148

In the Bloch ball, states at equal entropy form a series of concentric spheres. As we increase149

the entropy, the points of these spheres become closer and closer, and therefore the error in150

using a mixture of |L and |R instead of the actual state becomes smaller. The same happens151

for the space of mixtures of any quantum system.152

Mathematically, the trace distance T (ρ,σ) between two mixed states ρ and σ is contrac-153

tive under a completely positive trace-preserving (CPTP) map M . That is, T (M(ρ), M(σ)) ≤154

T (ρ,σ) [10]. In the finite-dimensional case, we can have a CPTP map that increases the155
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entropy of all states except that of the maximally mixed state, which is a fixed point.2 Un-156

der such a map, all pure states are mapped to mixed states, orthogonal states are mapped to157

non-orthogonal states and the map is strictly contractive. In section 4, when we construct the158

high-entropy limit, the map that results will follow this intuition in the infinite-dimensional159

case, with the only difference that there is no maximally mixed state that does not change.3 If160

we call G the space of all mixtures of Gaussian states, the states with a non-negative Wigner161

function, given an arbitrary mixed state ρ, we will find a state σρ ∈ G that is closest to ρ. As162

we apply our entropy-increasing map, the entropy of ρ increases and σρ will get closer to ρ.163

In this sense the states will “look classical.”164

What we described here is just a geometric property of the space of quantum mixed states,165

and it is independent of the source of entropy.166

3 Reinterpreting traditional approaches167

One of the advantages of our approach is that it is compatible with more traditional ones.168

Let us see how this works in two cases: the failure of classical statistical mechanics to predict169

black-body radiation and the recovery of classical statistical mechanics for thermal equilibrium.170

3.1 Black-body radiation171

The failure of classical statistical mechanics to predict the black-body radiation spectrum was172

one of the key drivers for the development of quantum theory. The spectrum predicted by173

classical mechanics is given by the Rayleigh–Jeans law,174

2ν2kBT
c2

=
2ν2

c2β
, (4)

where β = 1
kBT . The one predicted by quantum mechanics is given by Planck’s law,175

2hν3

c2

1

exp
�

hν
kBT

�

− 1
=

2hν3

c2

1
ehβν − 1

. (5)

It is well known that the two agree for small values of ν since ex ≃ 1+ x +O(x2) for x ≪ 1.176

2hν3

c2

1
ehβν − 1

=
2hν3

c2

1
1+ hβν+O (ν2)− 1

≃
2ν2

c2β
. (6)

Note that the same result can be achieved taking the limit for large temperatures, i.e. the177

classical black-body radiation spectrum can also be understood as the first term in the expan-178

sion for small β ,179

2hν3

c2

1
ehβν − 1

=
2hν3

c2

1
1+ hβν+O (β2)− 1

≃
2ν2

c2β
. (7)

Since β is the inverse of the temperature, this is the limit for large temperatures. Since the180

entropy increases as the temperature increases, this is also the limit for large entropy. That is,181

the classical distribution is recovered as the high-entropy limit for the quantum distribution.182

2This is a particular instance of mixing/relaxing ergodic quantum channels where the fixed point is the maxi-
mally mixed state [11].

3In the infinite-dimensional case, one could have infinite-dimensional subspaces that remain orthogonal while
increasing the entropy of all its elements. This corresponds, for example, to the case where there are conserved
quantities. Note that in the map we construct in section 4, the expectation of all polynomials of position and
momentum changes, and therefore no function of position and momentum is a conserved quantity.
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3.2 Thermal equilibrium183

We can similarly reinterpret results that take the mathematical limit ħh → 0. For example,184

following the original paper from Wigner [12], we can consider the Wigner distribution of a185

system in thermal equilibrium at inverse temperature β:186

W (x , p) =

∫

d yei(x+y)p/ħh〈x + y|e−β Ĥ |x − y〉e−i(x−y)p/ħh (8)

Thermal equilibrium is described by ρ̂ = e−β Ĥ , which is the mixed state that maximizes en-187

tropy at a given average energy. The entropy of this state is directly connected to the value of188

β such that when S tends to∞, β tends to 0. From this, Wigner considers the transformed189

Hamiltonian190

H̃ = ei x p/ħhĤe−i x p/ħh =
(p+ iħh∂ /∂ x)2

2m
+ V (x) = ε(x , p) + i

ħhp
m
∂

∂ x
−
ħh2

2m
∂ 2

∂ x2
(9)

where ε(x , p) is the classical Hamiltonian. The extra term contains the quantum corrections;191

we will refer to it as Q̂. The Wigner function becomes192

W (x , p) =

∫

d y〈x + y|e−β H̃ |x − y〉. (10)

At this point, Wigner expands this expression in powers of ħh, showing that quantum corrections193

are at second order. What we can do is instead expand in powers of β . We can show that194

quantum corrections are also only found at second order in β , justifying the classical limit.195

Let’s start by considering the first-order expansion, e−β H̃ ≃ 1− β(ε+ Q̂). So at first order we196

get197

W (x , p)≃ 1− βε(x , p)− β
∫

d y〈x + y|Q̂|x − y〉. (11)

Focusing on the last term, we can insert an identity in the momentum eigenbase198

∫

d y〈x+y|Q̂|x−y〉=
∫ ∫

dkd yei2k y

�

−
ħhp
m

k+
ħh2

2m
k2

�

=

∫

dkδ(2k)

�

−
ħhp
m

k+
ħh2

2m
k2

�

= 0.

(12)
The first-order quantum correction vanishes, showing that the classical approximation is cor-199

rect to first order in β , which corresponds to the limit of large entropy. We can consider the200

second-order correction201

W (x , p)≃ 1− βε(x , p)− β2ε2(x , p)− β2

∫

d y〈x + y|Q̂V ( x̂) + V ( x̂)Q̂|x − y〉, (13)

giving the first nonzero quantum correction to the Wigner function.202

4 The high-entropy limit203

Having given qualitative reasons for the limit, and having seen how, in specific cases, standard204

arguments can be reinterpreted consistently with our view, we now develop the limit as a205

direct consequence of entropy increase. Since the maximum entropy attainable by a quantum206

system is the logarithm of the dimension of the corresponding Hilbert space [10], the high-207

entropy limit exists only for infinite-dimensional spaces. This explains why spin, which lives208

in a finite-dimensional space, is an intrinsically quantum property. Therefore we are going to209
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concentrate on the case of a single degree of freedom identified by position and momentum.210

The case of multiple degrees of freedom can be recovered by increasing the entropy of all211

DOFs at the same time, that is, by increasing the entropy of each DOF independently, without212

introducing correlations.213

The overall argument can be broken down into the following steps:214

1. Characterize entropy-increasing maps in classical mechanics for a single DOF, noting that215

they can all be understood as Hamiltonian evolution followed by a pure stretching map,216

one that stretches position and momentum by the same factor
p
λ. Under this map, the217

expectation of a polynomial of position and momentum of degree n is also multiplied by218

a factor of
p
λn.219

2. Show that a pure stretching map in quantum mechanics cannot be defined over sym-220

metrized operator averages or normal ordering.221

3. Show that it can be defined over anti-normal ordering. Show that if we rescale the222

zero of entropy, the commutators become [X , P] = ıħh
λ , which makes the limit λ →∞223

mathematically equivalent to ħh→ 0224

4. Show how, in the limit, the Wigner W and Husimi Q distributions become closer and225

closer.226

4.1 Stretching classical phase space227

Before looking at the quantum case, let us study the high-entropy limit of classical mechanics.228

We are looking for all those transformations that increase the entropy of all states by the same229

amount.230

We are going to study the one-dimensional case, therefore let us call M = (R2,ω) the231

phase space for a single degree of freedom, whereω is the associated symplectic form. Suppose232

we have a map R : M→M that acts on phase space. This map will also act on probability233

distributions defined on M by moving them point to point. We require that R increase the234

entropy of each distribution ρ by a set value ∆S = logλ > 0. That is,235

S(R(ρ)) = S(ρ) + logλ, (14)

where S(ρ) = −
∫

Mρ logρd xdp and R(ρ) is the distribution as it is transformed through the236

map.237

We focus on maps that increase the entropy uniformly because, in the end, we will want238

Hamiltonian evolution on the original states to correspond to Hamiltonian evolution on the239

transformed states. Since Hamiltonian evolution maps states at constant entropy, S(R(ρ))240

must be a function of S(ρ). Moreover, note that for any ρ1 and ρ2 with disjoint support,241

S
�1

2ρ1 +
1
2ρ2

�

= 1+ 1
2S (ρ1) +

1
2S (ρ2). Since R will preserve disjointness of support, the one242

bit of entropy increase will have to carry through the map, meaning that the difference in243

entropy will need to be preserved. This is why we are focusing on maps that increase the244

entropy uniformly.245

For a generic transformation, the increase of entropy is given by the expectation of the246

Jacobian determinant ∆S =
∫

M ρ log |∂aRb|d xdp. Since the increase has to be the same for247

all distributions, we must have |∂aRb| = λ > 1.4 Recall that the Jacobian determinant tells248

us how an infinitesimal volume scales through the transformation, and therefore a map that249

increases entropy uniformly is exactly a map that stretches phase space uniformly. We call250

such a map a stretching map.251

4The case of a negative Jacobian is a reflection in phase space, which cannot be achieved through a continuous
evolution in time and is therefore discarded.
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Suppose, in fact, that ρ is a uniform distribution over a region of area W1. Then we have252

S(ρ) = log W1. Applying the stretching map, ρ will transform into a uniform distribution over253

a region of area Wλ = λW1. The final entropy is therefore S(R(ρ)) = logλW1 = log W1+ logλ.254

The factor λ, then, can be understood either as the ratio between initial and final areas, or255

as the exponential of the entropy increase. Therefore studying the high-entropy limit means256

studying what happens under stretching maps in the limit λ→∞.257

Note that the transformation is not a canonical transformation. Canonical transforma-258

tions, those that can be generated by Hamiltonian evolution, preserve areas in phase space259

and conserve entropy. In fact, for a single degree of freedom, canonical transformations and260

volume-preserving maps coincide. This allows us to show that all stretching maps can be writ-261

ten as R = T ◦ U , where U is a canonical transformation and T is a pure stretching map262

defined as263

T (x , p) 7→ (
p

λx ,
p

λp) (15)

where λ= (1,∞). That is, any stretching map can be understood as first performing a canon-264

ical transformation that preserves entropy followed by a pure stretch of position and momen-265

tum.266

To see how this works, note that given a stretching map R, we can always write U = T−1◦R.267

Since R stretches phase space everywhere by a factor λ and T−1 shrinks it by the same factor,268

U preserves areas and is a canonical map, since we restricted ourselves to the one-dimensional269

case.5 Therefore R = T ◦ U , which means we only need to study T to characterize all maps270

that increase entropy uniformly.271

We can alternatively characterize stretching maps by how the Poisson brackets transform.272

Note that273

{R(x), R(p)}= ∂xR(x)∂pR(p)− ∂xR(p)∂pR(x) = |∂aRb|= λ. (16)

That is, the Poisson bracket of the transformed position and momentum is the Jacobian de-274

terminant of the transformation, which is λ. Since this is an equality, all maps that satisfy the275

above transformation of the Poisson brackets are stretching maps.276

For a pure stretching map, we can provide a more specific characterization. Note, in fact,277

that a distribution with compact support is always fully characterized by all its central mo-278

ments, that is, the expectations for all polynomials of position and momentum. Therefore,279

once we know how the central moments transform through the map, we know how all dis-280

tributions with compact support transform and therefore we fully characterize the map. This281

means that T is a pure stretching map if and only if282

〈T (xnpm)〉= (
p

λ)(n+m)〈xnpm〉. (17)

4.2 Operator ordering283

Ideally, we would want to treat the quantum case similarly to the classical case. We would look284

for those quantum channels (i.e. CPTP maps) R that increase the entropy of all mixed states by285

the same amount, we would show that they can be decomposed into a unitary part and a pure286

stretching part and so on. In practice, the quantum version of the problem is much harder.287

First of all, a map that increases the entropy of all quantum states cannot be invertible: pure288

states have the lowest entropy and therefore no state of lower entropy can be mapped to them.289

Secondly, since our map increases entropy, it does not in general preserve products. In fact, if290

we had R(AB) = R(A)R(B), then R([A, B]) = [R(A), R(B)], which would mean R is unitary and291

therefore preserves entropy. Since, in general, R(AB) ̸= R(A)R(B), different permutations of292

polynomials will be transformed differently: the operator ordering matters.293

5To extend to the general case, the stretching map must not only stretch the total volume, but areas in each
DOF. Mathematically, this means rescaling the symplectic form ω.
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In this light, we are looking for a map that rescales the expectations of the polynomials for294

a particular ordering. There are three commonly used orderings: symmetrized averages, nor-295

mal ordering and anti-normal ordering. The first takes the product of n operators by averaging296

all possible permutations; the second is in terms of polynomials of the form (a†)nam, where297

a =
Æ

mω
2ħh (X +

i
mω P) and a† are the ladder operators, m is the mass and ω the angular fre-298

quency; the last is in terms of an(a†)m. The three orderings are associated, respectively, with a299

quasi-probability distribution [13]: the Wigner function W , the Glauber-Sudarshan P distribu-300

tion and the Husimi Q distribution. In each case, the expectation under the quasi-probability301

distribution of polynomials of classical variables returns the expectation of the respective or-302

dering.303

Interestingly, not all orderings will allow a pure stretching map T that rescales all expec-304

tations and increases the entropy of all states. Let us consider the symmetrized average case.305

We are looking for a map TW for which306

〈TW (Π(X , ..., X
︸ ︷︷ ︸

n times

, P, ..., P
︸ ︷︷ ︸

m times

))〉= (
p

λ)(n+m)〈Π(X , ..., X
︸ ︷︷ ︸

n times

, P, ..., P
︸ ︷︷ ︸

m times

)〉, (18)

where Π(A1, A2, . . . , An) =
1
n!

∑

π Aπ(1)Aπ(2) · · ·Aπ(n) is the average of the products for each307

permutation π. These averages correspond to the expectation calculated through the Wigner308

function W (x , p)309

〈Π(X , ..., X
︸ ︷︷ ︸

n times

, P, ..., P
︸ ︷︷ ︸

m times

)〉=
∫

M
xnpmW (x , p)d xdp. (19)

The map TW , then, would correspond to a pure stretching map on the Wigner function. How-310

ever, this cannot work. Wigner functions can have regions with negative values, but the size311

of these regions cannot exceed a few units of ħh [14]. The size of these negative regions would312

increase under TW , giving functions that do not correspond to a quantum state. Therefore we313

cannot find a pure stretching map in the symmetrized average operator ordering.314

Let us now consider a pure stretching map TP in normal ordering. This would have:315

〈TP((a
†)nam)〉= (
p

λ)(n+m)〈(a†)nam〉. (20)

For the vacuum state we have a|0〉 = 0, which means the mean value of all observables in316

normal ordering for the vacuum is zero. These would remain unchanged by TP . The vacuum317

state, then, would not change and therefore the map would not increase entropy for all states.318

The normal ordering is ruled out as well.319

We turn our attention to the anti-normal ordering and a map TQ such that320

〈TQ(a
n(a†)m)〉= (
p

λ)(n+m)〈an(a†)m〉. (21)

This ordering solves the previous problem of the vacuum. The anti-normal ordering is con-321

nected to the Husimi Q distribution by322

〈an(a†)m〉=
∫

αn(α∗)mQ1(α)d
2α. (22)

The map TQ, then, corresponds to a pure stretching map on the space where Q is defined. That323

is,324

TQ(Q1(α))≡Qλ(α) =
1
λ

Q1

�

α
p
λ

�

. (23)

We indicate Q1 as the initial unstretched distribution and Qλ the final stretched distribution325

by a factor of λ. We can in fact verify that326

∫

αn(α∗)mQλ(α)d
2α=

∫

αn(α∗)m
1
λ

Q1

�

α
p
λ

�

d2α=

∫

p

λ
n+m
βn(β∗)mQ1(β)d

2β . (24)
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Since the Husimi distribution is non-negative, this avoids the issue presented by the Wigner327

function.328

The anti-normal ordering, then, is a potential candidate. We now need to show that a pure329

stretching map TQ actually exists.330

4.3 Pure quantum stretching map331

If pure quantum stretching maps TQ exist, they must be CPTP maps as they must transform332

mixed states into mixed states. Moreover, since they have to increase entropy for all states,333

they must be describing an open quantum system. We thus show that pure stretching maps334

can be expressed as the solution of a master equation in Lindblad form and the Heisenberg335

picture. We start with336

d
d t

X =
i
ħh
[H, X ] +
∑

i

γi

�

L†
i X Li −

1
2

�

L†
i Li , X
	

�

(25)

where X is an operator, Li are the jump operators and γi are positive parameters. To define TQ337

for a single DOF we set γi = {γ} and Li = {a†}. We also set H = 0 since TQ should be purely338

dissipative. The equation of motion of a reduces to339

d
d t

a =
γ

2
a (26)

with solution a(t) = e
γ
2 t a =

p
λa, where we make the identification λ = eγt . In general, we340

find341

d
d t

an(a†)m =
γ

2
(n+m)an(a†)m, (27)

meaning that this evolution realizes the stretching map in anti-normal ordering. That is,342

(an(a†)m)(t) = e
γ
2 t(n+m)an(a†)m = (

p
λ)(n+m)an(a†)m.6343

This shows that a map TQ that stretches the Q distribution can be understood as a purely344

dissipative process that runs for a time ∆t with γi =
¦

logλ
∆t

©

and Li = {a†}, and therefore it345

is a CPTP map. Note that, for the same DOF, a† is not uniquely fixed as it depends on the346

parameter mω. Moreover, ladder operators with different values of the parameter mω are not347

going to commute, therefore will lead to different transformations. That is, while we fixed the348

ordering of the operators, the non-commutative nature of quantum observables still implies a349

choice within a one-parameter family of operators. However, note that a linear transformation350

that stretches X and shrinks P as351

U(X , P) =
�p
αX ,

1
p
α

P
�

(29)

is a unitary transformation. Under this map, U(a) =
Æ

mωα
2ħh (X +

i
mωα P), which means that352

mω can be changed through a unitary operator. Consistently with the classical definitions, we353

can define RQ = TQ ◦U to be a quantum stretching map. Therefore, even if fixing the operator354

ordering does not pick a unique map, the behavior when entropy increases is the same.355

Lastly, we need to show that TQ increases entropy for all states. Note that a Lindblad356

operator increases entropy for all states if [15]357

∑

i

Li L
†
i ≤
∑

i

L†
i Li . (30)

6Note that for the choice of Li = {a}, we get the opposite behavior, characterized by

d
d t
(a†)nam = −

γ

2
(n+m)(a†)nam (28)

leading to shrinking (λ≤ 1) of all observables taken in normal ordering.
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In our case, this reduces to358

a†a ≤ aa†. (31)

Since [a, a†] = aa† − a†a = I ≥ 0, our map increases entropy for all states.7359

We can now look at the effect of the map on X , P and their commutator. We have360

TQ(a) =
p

λa (32)

TQ(a
†) =
p

λa† (33)

TQ(X ) = TQ

�√

√ ħh
2mω

(a† + a)

�

=
p

λX (34)

TQ(P) = TQ

�

ı

√

√ħhmω
2
(a† − a)

�

=
p

λP (35)

TQ([X , P]) = TQ(ıħh) = ıħh (36)

[TQ(X ), TQ(P)] = [
p

λX ,
p

λP] = λ[X , P] = λıħh. (37)

Recall that the uncertainty principle between two operators is linked to the commutator by361

the formula362

σAσB =
1
2
|〈[A, B]〉|. (38)

Therefore we find that the uncertainty between TQ(X ) and TQ(P) grows with λ, which is363

consistent with the stretching behavior of the map.364

Note that when one takes the usual mathematical limit ħh→ 0, the distribution, and there-365

fore the uncertainty over position and momentum, is kept fixed. We can achieve that by366

redefining X and P in the following way367

X̂ =
1
p
λ

X (39)

P̂ =
1
p
λ

P (40)

[X̂ , P̂] =
ıħh
λ

(41)

TQ(X̂ ) = X (42)

TQ(P̂) = P (43)

[TQ(X̂ ), TQ(P̂)] = ıħh. (44)

Note how the redefinition of the operators effectively undoes the stretching operation. Also368

note that the redefinition reduces the minimum uncertainty between position and momen-369

tum. The same limit, then, can be understood in two different ways. In the more physical370

viewpoint, we are mapping states within the same state space, which means pure states re-371

main at the same level of uncertainty, of entropy. The map will move states to higher entropy372

within the same space as λ increases. Conversely, in the more mathematical viewpoint, we373

can redefine the state space while going through the map. The uncertainty, the entropy, of the374

mapped states will remain the same, but the pure states of the target space will have lower375

uncertainty, lower entropy, effectively adding new states at these lower values. As we take376

the limit λ→∞ in the first viewpoint, in the second viewpoint the commutator [X̂ , P̂] = ıħh
λ377

decreases, which is equivalent to taking the limit ħh → 0. This is the group contraction that378

morphs the Moyal bracket Lie algebra to the Poisson bracket Lie algebra [16–18]. That is,379

7Note that for the choice Li = {a} the inequality is not satisfied.
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as λ increases, the entropy of pure states becomes lower and lower, and the structure of the380

quantum space becomes closer and closer to the structure of classical mechanics.381

Note that while entropy could be increased in many different ways, under a stretching382

map unitary evolution will be mapped to another unitary evolution. In fact, if H is a poly-383

nomial of position and momentum, we will be able to write the corresponding Ĥ such that384

TQ(Ĥ) = H. The stretching map, then, is useful to show not only that high-entropy states385

can be approximated by classical states, but that unitary evolution can be approximated by386

classical Hamiltonian mechanics. One may show that arbitrary entropy-increasing maps will387

recover classical states, for example by applying similar techniques to entropy bounds [19],388

but they will not necessarily recover classical Hamiltonian evolution.389

0.2 0.4 0.6 0.8 1 1.2 1.4

−3

−2

−1

1

Σ

S

classical
quantum
λ= 2
λ= 10

Figure 3: Entropy S in nats for a Gaussian state as a function of uncertainty Σ, mea-
sured in units of ħh. Between the classical and the quantum case, we have the quantum
case where pure states are rescaled by a factor of λ: SλQ(Σ) = SQ(λΣ)− ln(λ). Tak-
ing λ to infinity corresponds to taking ħh to zero.

As a more quantitative illustration, we can see what happens to the entropy of Gaussian390

states as we reduce the lowest possible uncertainty in the redefined quantum space. The391

entropy will become SλQ(Σ) = SQ(λΣ)− ln(λ). As we can see in Fig. 3, even with low factors392

of λ the entropy curve approaches the classical one. If one takes the limit λ→∞, the above393

expression reduces to the classical equation.394

Note that the above argument works for any map TQ ◦U that combines the pure stretching395

map with an arbitrary unitary evolution U . Also, while we have not shown that anti-normal396

ordering is the only ordering that allows a stretching map, it will need to have the same effect397

on X and P, leading to the same limit. The question of whether all maps that perform the same398

group contraction can be expressed as TQ◦U remains open. However, they will factorize in that399

fashion in the limit, since the classical limit can always be factorized as a pure stretching map400

following a symplectomorphism. Similarly, the question of whether TQ increases the entropy401

of all states by the same amount remains open. However, it will do so in the limit since TQ402

will become closer and closer to a pure classical stretching map. Lastly, we have not shown403

that all transformations that increase entropy must stretch phase space. Note, however, that404

a finite region of phase space can only hold mixed states with finite entropy. Therefore a map405

that does not stretch some region of phase space will necessarily lead to states whose entropy406

will not go to infinity as the map is reapplied over and over. Regardless, our ultimate goal is407

not to study all possible ways entropy can be increased. Our goal is simply to show that, as408

entropy increases, the classical description becomes a suitable approximation.409

To sum up, we have found a pure quantum stretching map TQ. It is a CPTP map. It410

rescales operators in anti-normal ordering. It increases entropy for all states. It recovers411

classical mechanics in the limit. This means that the space of quantum states, as entropy412
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increases, becomes more and more classical. All of this is done under general conditions, and413

is independent of the mechanism that performs the entropy increase.414

4.4 Stretching the Wigner distribution415

To understand what happens physically during the group contraction, let us see how the416

Wigner W distribution changes under a pure quantum stretching map. To do that, we can417

use the fact that Q is the Weierstrass transform of W . That is,418

Qλ(α) =
2
π

∫

Wλ(β)e
−2|α−β |2 d2β . (45)

Considering the evolution of Q, we get419

∫

Wλ(β)e
−2|α−β |2 d2β =

1
λ

∫

W1(β)e
−2|α/

p
λ−β |2 d2β . (46)

We notice that these two equations are scaled convolutions between the Wigner distribution420

and Gaussian functions. Symbolically,421

(Wλ ∗ G)(α) =
1
λ
(W1 ∗ G)
�

α
p
λ

�

, (47)

where G(α) = (2/π)e−2|α|2 indicates the Gaussian function. To get rid of the convolution, we422

now take a Fourier transform of both sides. Keeping in mind that the Fourier transform of a423

general function f behaves under scaling according to424

F
�

1
λ

f
�

α
p
λ

��

(k) = F( f (α))(
p

λk) (48)

and using the convolution theorem, we get425

F(Wλ)(k)F(G)(k) = F
�

1
λ

W1

�

β
p
λ

��

(k)F(G)(
p

λk). (49)

We now notice that426

F(G)(
p
λk)

F(G)(k)
=

e−λ|k|
2/8

e−|k|2/8
= e−(λ−1)|k|2/8 = F(G)(

p

λ− 1k) = F
�

1
λ− 1

G
�

β
p
λ− 1

��

(k), (50)

finally giving427

Wλ(β) = F−1
�

F
�

1
λ

W1

�

β
p
λ

��

F
�

1
λ− 1

G
�

β
p
λ− 1

���

=
1

λ(λ− 1)
W1

�

β
p
λ

�

∗G
�

β
p
λ− 1

�

.

(51)
Writing this down explicitly,428

Wλ(β) =
2

πλ(λ− 1)

∫

W1

�

α
p
λ

�

e−
2
λ−1 |α−β |

2
d2α. (52)

A similar calculation gives the Glauber-Sudarshan P distribution, as this one is also obtained429

from a Weierstrass transfrom of Q.430

It is interesting to consider what happens to the negative regions of W under the stretching431

map. We know that W can have negative regions, but their size is limited by the uncertainty432

principle. In fact, convolving W with a 2D Gaussian with unitary spread, as in the definition433
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of Q, returns a function that is never negative. In the limit λ≫ 1, the formula for Wλ reduces434

to435

Wλ(β)→λ≫1
2
πλ2

∫

W1

�

α
p
λ

�

e−
2
λ |α−β |

2
d2α=Qλ(β). (53)

Therefore, while negative regions can be in principle found at any finiteλ, W tends to a positive436

function in the limit. As usual for the W distribution, the phase space size of negative regions is437

limited to ħh by the uncertainty principle. The weight of the function in such regions is limited438

between ±2/ħh for pure states. The effect of the stretching map is to reduce this bound to439

±2/(λħh) for large values of λ. A clear interpretation can be made by working directly on the440

Fourier transform of W ; see Eq. (51). The function F(Wλ) is a scaled version of F(W1) with a441

Gaussian filter applied to it. Quantum information in W1 is carried by spectral weights with442

k-vectors larger than 1. The bandwidth of the Gaussian filter is given by λ/(λ−1). This cutoff443

approaches 1 in the limit, filtering away the interference terms.444

We have thus shown that, in the limit of high entropy, the Wigner distribution can be445

approximated by a positive function. We now need to show that the evolution can be approx-446

imated by classical Hamiltonian evolution. An intuitive way to understand why this works is447

to look at the evolution of the Wigner function under a Hamiltonian H = p2/2m+ V where448

the potentials V are analytic. We have [20]449

d
d t

W = {{H, W}}

= {H, W}+
∑

n

ħh2n(−1)n

(2n+ 1)! 22n
∂ (2n+1)

x V∂ (2n+1)
p W.

(54)

The evolution is in terms of the Moyal bracket {{H, W}}, which can be expanded in orders of450

ħh with the Poisson bracket {H, W} as the leading term. In our limit, ħh is constant but as the451

function stretches all derivatives of W decrease. Therefore the first term becomes dominant.452

5 Conclusion453

We have seen that classical mechanics can be recovered as the high-entropy limit of quantum454

mechanics. That is, states of higher and higher entropy are better and better approximated455

by classical distributions over phase space. This approach to the classical limit is independent456

of mechanism and interpretation, as it does not matter how the entropy is increased or what457

one believes quantum states to represent: as long as the description is in terms of mixed458

states of sufficiently high entropy, classical mechanics applies. The approach fits naturally459

with experimental considerations and other approaches, such as decoherence, and recovers460

the established mathematical recipe, which is the group contraction for ħh→ 0. Physically, this461

can be understood as taking the entropy of pure states to minus infinity, which is equivalent462

to saying that the relative entropy of mixed states goes to plus infinity. That is, in the same463

way that c → ∞ should be understood as v ≪ c, ħh → 0 should be understood as S ≫ 0,464

as physically we cannot take limits of physical constants. This gives a reasonable and precise465

account of the classical limit: in the same way that non-relativistic mechanics applies to low466

speed, classical mechanics applies to high entropy.467

The limit also gives us additional insights. As we saw, classical states for which∆x∆p < ħhe468

are states with negative entropy, which imply a breakdown of thermodynamics. It is no won-469

der, then, electrons cannot fall on the nucleus or that classical mechanics gives us the wrong470

spectra for black-body radiation. Classical mechanics fails at low entropy. The use of the cor-471

respondence principle as guidance for the development of quantum mechanics, then, can be472
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understood as requiring that the new quantized theory reproduces classical mechanics at high473

entropy.474

In this light, we wonder whether it can be proven that quantum mechanics is the only way475

to fix the low-entropy range of classical mechanics. That is, is quantum mechanics the only476

theory that can recover classical mechanics at high entropy? To us, this is a question whose477

answer would be interesting regardless of the outcome.478
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[14] A. Kenfack and K. Życzkowski, Negativity of the Wigner function as an indicator of non-517

classicality, Journal of Optics B: Quantum and Semiclassical Optics 6(10), 396 (2004),518

doi:10.1088/1464-4266/6/10/003.519

[15] F. Benatti and H. Narnhofer, Entropy behaviour under completely positive maps, Letters in520

Mathematical Physics 15(4), 325 (1988), doi:10.1007/BF00419590.521

[16] J. E. Moyal, Quantum mechanics as a statistical theory, Mathematical Pro-522

ceedings of the Cambridge Philosophical Society 45(1), 99–124 (1949),523

doi:10.1017/S0305004100000487.524

[17] E. J. Saletan, Contraction of Lie groups, Journal of Mathematical Physics 2(1), 1 (1961),525

doi:https://doi.org/10.1063/1.1724208.526

[18] E. Inönü and E. P. Wigner, On the contraction of groups and their representations, Pro-527

ceedings of the National Academy of Sciences 39(6), 510 (1953), doi:10.1007/978-3-528

662-02781-3_31.529

[19] M. J. W. Hall, Entropic Heisenberg limits and uncertainty relations from the Holevo in-530

formation bound, Journal of Physics A: Mathematical and Theoretical 51(36), 364001531

(2018), doi:10.1088/1751-8121/aad50f.532

[20] M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Distribution functions in physics:533

Fundamentals, Physics Reports 106(3), 121 (1984), doi:https://doi.org/10.1016/0370-534

1573(84)90160-1.535

[21] G. Carcassi and C. A. Aidala, Assumptions of Physics, Michigan Publishing, ISBN 978-1-536

60785-706-7, doi:10.3998/mpub.12204707 (2021).537

17

https://doi.org/10.1088/1367-2630/15/7/073045
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1007/978-3-662-03875-8
https://doi.org/10.1088/1464-4266/6/10/003
https://doi.org/10.1007/BF00419590
https://doi.org/10.1017/S0305004100000487
https://doi.org/https://doi.org/10.1063/1.1724208
https://doi.org/10.1007/978-3-662-02781-3_31
https://doi.org/10.1007/978-3-662-02781-3_31
https://doi.org/10.1007/978-3-662-02781-3_31
https://doi.org/10.1088/1751-8121/aad50f
https://doi.org/https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/10.3998/mpub.12204707

	Introduction
	High entropy and classical states
	Producing quantum states
	Uncertainty from entropy
	Entropic aliasing

	Reinterpreting traditional approaches
	Black-body radiation
	Thermal equilibrium

	The high-entropy limit
	Stretching classical phase space
	Operator ordering
	Pure quantum stretching map
	Stretching the Wigner distribution

	Conclusion
	References

