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Abstract

Energy conditions are crucial for understanding why exotic phenomena such as traversable
wormholes and closed timelike curves remain elusive. In this paper, we prove the Double
Smeared Null Energy Condition (DSNEC) for the fermionic free theory in 4-dimensional
flat Minkowski spacetime, extending previous work on the same energy condition for
the bosonic case [1] [2] by adapting Fewster and Mistry’s method [3] to the energy-
momentum tensor T++. A notable difference from previous works lies in the presence of
the γ0γ+ matrix in T++, causing a loss of symmetry. This challenge is addressed by mak-
ing use of its square-root matrix. We provide explicit analytic results for the massless
case as well as numerical insights for the mass-dependence of the bound in the case of
Gaussian smearing.
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1 Introduction15

In general relativity, Einstein’s equation itself doesn’t impose any restrictions on the form of the16

energy-momentum tensor Tµν. This freedom allows the existence of solutions Gµν that may17

lead to surprising phenomena, such as macroscopic traversable wormholes [4], closed timelike18

curves [5] or other causality violations. Energy conditions are essential for explaining why19

these phenomena have never been observed. The Null Energy Condition (NEC) is particularly20

important since it is essential in the proof of Penrose’s singularity theorem [6] and the second21

law of black hole thermodynamics (or the Area Theorem) [7] [8] [9].22

Previous work has been done for new types of energy conditions namely the Smeared Null23

Energy Condition (SNEC) [10] and the Double-Smeared Null Energy Condition (DSNEC) [1]24

[2]which were used to deal with problems that arise when generalizing the NEC to a quantum25

setup [11–19]. Since this was only studied for the free bosonic theory, in this paper, we will26

focus on the SNEC and DSNEC for the fermionic theory. Our derivation will closely follow27

the reasoning of Fewster and Mistry [3] on the Quantum Weak Energy Inequalities for the28

Dirac field, who deduced a bound for the T00 component of the massive fermionic free theory29

in four-dimensional flat Minkowski spacetime, and Wei-Wing et al [20], who generalized this30

result for Minkowski spacetime of arbitrary dimensions.31

We introduce operators Oµi that enable us to express the smeared energy-momentum ten-32

sor as the difference between a positive semi-definite operator and a c-number. The primary33

challenge in defining these operators arises from the presence of the γ0γ+ matrix in T++,34

which reduces the symmetry of the problem. This obstacle is overcome by incorporating the35

square-root matrix of γ0γ+ in the definition of Oµi .36

In brief, the structure of the paper is as follows: In Section 2, we undertake the derivation37

outlined above and obtain an inequality for the once-smeared T++. However, this inequality38

is completely trivial, i.e. the lower bound obtained is −∞. We address this issue in Section39

3.1 by applying the smearing in two directions, providing a new energy condition:40

〈T f+ f−〉 ≥ −
1

2π4

∫ ∞

0

du

∫ ∞

m2
u

dv

�

vu3

6
−

m2u2

2
+

m4u
2v
−

m6

6v2

�

| ĝ+(u)|2| ĝ−(v)|2, (1)

where f± are smearing functions in spacetime coordinates and ĝ± denotes the Fourier trans-41

form of
p

f±. Additionally, we present explicit results for the massless case in Section 3.2,42

where we employ a Gaussian distribution as the smearing function and derive a bound that43

depends rationally on the standard deviations,44

〈T f+ f−〉 ≥ −
1

48π4σ3
+σ−

. (2)

Finally, in Section 3.3, we provide numerical results concerning the mass-dependence of the45

bound. In particular, we observe that for large masses, the bound asymptotically tends to zero.46

2 Derivation of the smearing null energy condition47

In this section, we will derive a bound for the T++ component of the energy-momentum tensor48

when smeared over the x+-direction1. The quantum field theory considered is the free fermion49

in Minkowski flat spacetime. Note that, despite the bound derived being trivial, the idea can50

and will be used to deduce a non-trivial bound in Section 3.1.51

1The light-cone variables x+ and x− are defined in Appendix A, as well as the light-cone momentum coordinates
k+ and k−.
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First, let us write the symmetrized version of the energy-momentum tensor for the free52

fermion (the Belinfante tensor):53

Tµν =
i
4
(ψ̄γµ∂νψ− ∂νψ̄γµψ+ ψ̄γν∂µψ− ∂µψ̄γνψ). (3)

In particular, we are interested in the light-cone component,54

T++ =
i
2
(ψ†A∂+ψ− ∂+ψ†Aψ), (4)

where we define A= γ0γ+.55

The decomposition of the fermionic quantum field into Fourier modes yields the following:56

ψ(x) =
∑

k,α

bα(k)u
α(k)e−ik·x + d†

α(k)v
α(k)eik·x , (5)

where here we are considering discrete Dirac quantization in a box of side L. The spinors57

uα(k) and vα(k), where α= 1,2 labels the two independent spin states, are given by58

uα(k) =





Ç

ωk+m
2ωkV φ

α

σ⃗·k⃗p
2ωk(ωk+m)V

φα



 and vα(k) =





σ⃗·k⃗p
2ωk(ωk+m)V

φα

Ç

ωk+m
2ωkV φ

α



 , (6)

in which the two dimensional column vectorsφα areφ1† = (1, 0),φ2† = (0, 1) and V = L3.The59

normalization has been chosen so that60

∑

α

||uα(k)||2 =
∑

α

||vα(k)||2 =
2
V

(7)

At the end of the derivation, we will take the continuous limit at L −→ +∞.61

Now, with these expansions, we can expand the first term of T++,62

i
2
(ψ†A∂+ψ) =

1
2

∑

k,k̃,α,α′

k̃+b†
α(k)bα′(k̃)u

†
α(k)Au†

α′
(k̃)ei(k−k̃)·x

−k̃+b†
α(k)d

†
α′
(k̃)u†

α(k)Avα′(k̃)e
i(k+k̃)·x

+k̃+dα(k)bα′(k̃)v
†
α(k)Auα′(k̃)e

−i(k+k̃)·x

−k̃+dα(k)d
†
α′
(k̃)v†

α(k)Av†
α′
(k̃)e−i(k−k̃)·x ,

(8)

and similarly for the second term. Normal ordering will switch dα(k) with d†
α′
(k̃) providing an63

additional minus sign:64

: T++ :=
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃)e

i(k−k̃)·x

+d†
α′
(k̃)d†

α(k)v
†
α(k)Avα′(k̃)e

−i(k−k̃)·x]

+(k+ − k̃+)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃)e

−i(k+k̃)·x

−b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃)e

i(k+k̃)·x].

(9)

We are interested in smearing T++ in the x+-direction. So, let us put all the other inputs to65

zero:66

: T++ : (x+, 0) =
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃)e

i(k+−k̃+)·x+

+d†
α′
(k̃)d†

α(k)v
†
α(k)Avα′(k̃)e

−i(k+−k̃+)·x+]

+(k+ − k̃+)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃)e

−i(k++k̃+)·x+

−b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃)e

i(k++k̃+)·x+].

(10)
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For general configurations, the expression above is point-wise unbounded from below, so we67

have to introduce a smearing. Define, for a smearing function f for which we assume to have68

the positivity condition f = g2 for some other real function g, the smeared energy-momentum69

tensor component:70

T f =

∫ +∞

−∞
d x+ : T++ : (x+, 0) f (x+). (11)

By the definition of the fourier transform, f̂ (k) =
∫ +∞
−∞ d x f (x)e−ikx , we get the following71

expression:72

T f =
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃) f̂ (k̃+ − k+)

+d†
α′
(k̃)d†

α(k)v
†
α(k)Avα′(k̃) f̂ (k+ − k̃+)]

+(k+ − k̃+)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃) f̂ (k+ + k̃+)

−b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃) f̂ (−k+ − k̃+)].

(12)

Note that the matrix A has eigenvalues λ1 = λ2 = 0, λ3 = λ4 = 2, so it is positive semi-definite.73

Then it is possible to find the matrix B such that B†B = B†B = A, i.e. B is the square root matrix74

of A. It is easy to obtain B explicitly but we will only use its existence.75

Define the following family of operators for i ∈ {1,2, 3,4} and µ ∈ R:76

Oµi =
∑

k,α

ĝ(−k+ +µ)bα(k)(Buα(k))i + ĝ(k+ +µ)d
†
α(k)(Bvα(k))i , (13)

O†
µi =
∑

k,α

ĝ(−k+ +µ)b
†
α(k)(u

†
α(k)B

†)i + ĝ(k+ +µ)dα(k)(v
†
α(k)B

†)i . (14)

So that Oµ for a fixed µ ∈ R is a four-dimensional vector of operators, and O†
µ a co-vector of77

the same type. Using the anti-commutation relations of the fields, one finds78

O†
µOµ = Sv

µ1+
∑

k,k̃,α,α′

ĝ(−k+ +µ) ĝ(−k̃+ +µ)b
†
α(k)bα′(k̃)u

†
α(k)Auα′(k̃)

− ĝ(k+ +µ) ĝ(k̃+ +µ)d
†
α′
(k)dα(k̃)v

†
α(k)Avα′(k̃)

+ ĝ(k+ +µ) ĝ(−k̃+ +µ)dα(k)bα′(k̃)v
†
α(k)Auα′(k̃)

+ ĝ(−k+ +µ) ĝ(k̃+ +µ)b
†
α(k)d

†
α′
(k̃)u†

α(k)Avα′(k̃),

where we have defined79

Sv
µ ≡
∑

k,α

ĝ(k+ +µ) ĝ(k̃+ +µ)δα,α′δk,k̃v†
α(k)Avα′(k̃) =
∑

k,α

ĝ(k+ +µ) ĝ(k+ +µ)v
†
α(k)Avα(k).

(15)
Proven in the literature [3], the following lemma alows us to recover T f .80

Lemma 1 Let f = g2 with g a real, smooth, compactly-supported2 function. Then the following
identity holds:

(k+ + k̃+) f̂ (k+ − k̃+) =
1
π

∫ ∞

−∞
dµµ ĝ(k+ −µ) ĝ(k̃+ −µ).

2Note that the assumption of compact support is stronger than necessary. For example, the lemma still holds
for g a Gaussian distribution, since the rapid decay of the function secures convergence of the integral.
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Using this lemma,81

T f =
1

2π

∫ ∞

−∞
dµµ(O†

µOµ − Sv
µ1). (16)

One can then compute the anti-commutator of the operator O,82

{O†
µi ,Oµi}=
∑

k,k̃,α,α′

( ĝ(−k+ +µ) ĝ(−k̃+ +µ)δα,α′δk,k̃u†
α(k)Auα′(k̃)

+ ĝ(k+ +µ) ĝ(k̃+ +µ)δα,α′δk,k̃v†
α(k)Avα′(k̃))1

=(Su
−µ + Sv

µ)1. (17)

Note that since g is real valued, | ĝ| is even.83

Using the anti-commutation relation obtained above, we can split the integral,84

T f =
1

2π

∫ ∞

−∞
dµµ(O†

µiOµi − Sv
µ1)

=
1

2π

∫ ∞

0

dµµ(O†
µiOµi − Sv

µ1) +
1

2π

∫ 0

−∞
dµµ(Su

−µ1−OµiO
†
µi). (18)

Notice that if µ≥ 0, then µ〈O†
µiOµi〉ψ ≥ 0, and similarly if µ≤ 0, then −µ〈OµiO

†
µi〉ψ ≥ 0, for85

any state |ψ〉. Hence,86

〈T f 〉ψ ≥ −
1

2π

∫ ∞

0

dµµSv
µ +

1
2π

∫ 0

−∞
dµµSu

−µ

= −
1

2π

∫ ∞

0

dµµ(Sv
µ + Su

µ). (19)

The computation preformed in appendix B shows that87

∑

α

u†
α(k)Auα(k) =

2
V

�

1−
k1

ωk

�

, (20)

∑

α

v†
α(k)Avα(k) =

2
V

�

1−
k1

ωk

�

. (21)

Finally, plugging it in the expression for Su and Sv and taking the continuous limit 1
V

∑

k⃗ −→
∫ d3 k⃗
(2π)3 ,88

we come to the conclusion that89

〈T f 〉ψ ≥ −
2
π

∫ ∞

0

dµµ

∫

d3k
(2π)3

| ĝ(k+ +µ)|2
�

1−
k1

ωk

�

. (22)

We will denote this bound as B1, where the subscript 1 represents the number of smearing90

directions, and the dependence on the smearing function is implicit.91

Unfortunately, the integral obtained in equation (22) diverges. By definition, k+ =
1
2(ωk+k1)92

= 1
2(ωk − k1) = 1

2(
q

k2
1 + k2

2 + k2
3 +m2 − k1), so we can change the integral variable accord-93

ingly. Using that the measure transforms as dk+ =
1
2(

k1

ωk
− 1)dk1, we have that the bound is94

proportional to95

B1∝−
∫ ∞

0

dµ

∫

dk+µ| ĝ(k+ +µ)|2
∫

dk2dk3. (23)

5
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We can then note that the integrals in k2 and k3 are decoupled and they will contribute with96

the volume of the space in those directions. Since the integral in µ and k+ does not vanish97

for non-trivial smearing functions, the expression above diverges, which means the bound is98

completely trivial.99

This outcome is clearly unsatisfactory since our aim was to derive a non-trivial lower100

bound. Such a bound would allow us to explore the extent to which the Null Energy Con-101

dition (NEC) is violated within the framework of free fermionic quantum field theory.102

However, this divergence is not unexpected, drawing an analogy with the divergence of103

the bound of the free bosonic theory [10], when the UV cut-off approaches zero. The main104

issue is that, in order to obtain a convergent integral, it is necessary to fully smear it in the105

time direction. Note that t is linearly dependent on x+ and x− due to x++ x− = t. Hence, we106

expect that, if we smear T++ in both light-cone directions, we will obtain a convergent lower107

bound. An earlier treatment can be found in [21], which also gives general reasons for the108

lack of any quantum energy inequalities over a finite null segment in dimensions higher than109

2.110

3 Double smeared null energy condition111

3.1 Derivation of the non-trivial bound112

In this section, we will prove a convergent lower bound, B2, by smearing T++ in both the113

x+ and x−-direction. In general, the smearing function can be of the form f (x+, x−). For114

practical purposes, we restrict our argument to the case where f is separable, i.e. the function115

factors multiplicatively f (x+, x−) = f+(x+) f−(x−). In other words, we are now interested in116

obtaining a lower bound for117

T f+ f− =

∫

d x+
∫

d x− : T++ : (x+, x−, 0) f+(x
+) f−(x

−). (24)

Keeping in mind that eik·x = eik+x+eik−x−e−ik⊥·x⊥ and using the definition of Fourier trans-118

form, we can carry out the same procedure as before to write119

T f+ f− =
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃) f̂+(k̃+ − k+) f̂−(k̃− − k−) + d†

α′
(k̃)d†

α(k)

v†
α(k)Avα′(k̃) f̂+(k+ − k̃+) f̂−(k− − k̃−)] + (k+ − k̃+)[dα(k)bα(k̃)v

†
α(k)Auα′(k̃)

f̂+(k+ + k̃+) f̂−(k− + k̃−)− b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃) f̂+(−k+ − k̃+) f̂−(−k− − k̃−)].

(25)

Denoting g± =
p

f±, we define the new operators:120

Oµi =
∑

k,α

Ĝ(−k+µ)bα(k)(Buα(k))i + Ĝ(k+µ)d†
α(k)(Bvα(k))i (26)

O†
µi =
∑

k,α

Ĝ(−k+µ)b†
α(k)(u

†
α(k)B

†)i + Ĝ(k+µ)d†
α(k)(v

†
α(k)B

†)i , (27)

where Ĝ(k + µ) = ĝ+(k+ + µ+) ĝ−(k− + µ−) and µ± are two dummy variables that shall be121

integrated out in the end. We will denote µ= (µ+,µ−).122

6
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Since the Fourier transform of the product is the convolution, f = g2 implies that its Fourier123

transform f̂ = 1
2π

∫

dµ ĝ(µ) ĝ(k−µ), so we have124

f̂−(k− − k̃−) =
1

2π

∫

dµ ĝ−(µ) ĝ−(µ− (k− − k̃−)) (28)

=
1

2π

∫

dµ− ĝ−(k− −µ−) ĝ−(k̃− −µ−), (29)

where we changed the variable µ = k− − µ− and used that since g− is real, ĝ−(x) = ĝ−(−x).125

Applying lemma 1 to f+ and g+, one obtains126

(k+ + k̃+) f̂+(k+ − k̃+) =
1
π

∫ ∞

−∞
dµ+µ+ ĝ+(k+ −µ+) ĝ+(k̃+ −µ+). (30)

Then for the double smearing case, applying lemma 1 again, we have127

(k++k̃+) f̂+(k+−k̃+) f̂−(k−−k̃−) =
1

2π2

∫

dµ+dµ−µ+ ĝ+(k+−µ+) ĝ+(k̃+ −µ+) ĝ−(k−−µ−) ĝ−(k̃− −µ−).

(31)
Taking advantage of the modified lemma and symmetry,128

1
2π2

∫ +∞

−∞
dµ+

∫ +∞

0

dµ−µ+(O†
µOµ − Sv

µ1) (32)

=
∑

k,k̃,α,α′

1
2π2

∫ +∞

−∞
dµ+µ+

∫ +∞

0

dµ−
1
2
( ĝ(−k− +µ−) ĝ(k̃− −µ−) + ĝ(−k− −µ−) ĝ(k̃− +µ−))

( ĝ(−k+ +µ+) ĝ(k̃+ −µ+)b†
α(k)bα′(k̃)u

†
α(k)Auα′(k̃)− ĝ(k+ +µ+) ĝ(−k̃+ −µ+)d

†
α′
(k)dα(k̃)v

†
α(k)Avα′(k̃))

+
1
2
( ĝ(k− +µ−) ĝ(k̃− −µ−) + ĝ(k− −µ−) ĝ(k̃− +µ−))

( ĝ(k+ +µ+) ĝ(k̃+ −µ+)dα(k)bα′(k̃)v†
α(k)Auα′(k̃) + ĝ(−k+ +µ+) ĝ(k̃+ +µ+)b

†
α(k)d

†
α′
(k̃)u†

α(k)Avα′(k̃))
(33)

=
1

4π2

∑

k,k̃,α,α′

∫ +∞

−∞
dµ+µ+

∫ +∞

−∞
dµ− ĝ(−k− +µ−) ĝ(k̃− −µ−)( ĝ(−k+ +µ+) ĝ(k̃+ −µ+)b†

α(k)bα′(k̃)u
†
α(k)Auα′(k̃)

− ĝ(k+ +µ+) ĝ(−k̃+ −µ+)d
†
α′
(k)dα(k̃)v

†
α(k)Avα′(k̃)) + ĝ(k− +µ−) ĝ(k̃− −µ−)

( ĝ(k+ +µ+) ĝ(k̃+ −µ+)dα(k)bα′(k̃)v†
α(k)Auα′(k̃) + ĝ(−k+ +µ+) ĝ(k̃+ +µ+)b

†
α(k)d

†
α′
(k̃)u†

α(k)Avα′(k̃))
(34)

where now the definition of Sv
µ is different from the once-smeared case:129

Sv
µ =
∑

k,α

| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2v†
α(k)Avα(k) (35)

=
2
V

∑

k

| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2(1−
k1

ωk
) (36)

and the anti-commutator is what we expect, with the new definitions of Sv
µ and Su

µ:130

{O†
µi ,Oµi}= (Su

−µ + Sv
µ)1. (37)

Comparing with the expression of (25), in a analogous way as before, we can prove that131

〈T f+ f−〉 ≥ −
1

2π2

∫ +∞

0

dµ+

∫ +∞

0

dµ−

∫

d3k⃗
(2π)3

µ+| ĝ+(k++µ+)|2| ĝ−(k−+µ−)|2(1−
k1

ωk
). (38)

7
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We know that132

k+ =
1
2
(ωk + k1), (39)

k− =
1
2
(ωk − k1), (40)

ω2
k = k2

1 + k2
2 + k2

3 +m2. (41)

So setting k⊥ :=
q

k2
2 + k2

3 we obtain,133

4k+k− = k2
2 + k2

3 +m2 = k2
⊥ +m2, (42)

and it’s straightforward to find that134

d(k+k−) =
1
2

k⊥dk⊥. (43)

Since dk1 ∧ dk2 ∧ dk3 = dk1 ∧ dk⊥ ∧ k⊥dθ , where θ is the angular variable in polar co-135

ordinates, we can rewrite part of our integral measure in terms of dk+, dk− and dθ , i.e.136

dk1 ∧ dk2 ∧ dk3 = 2(k+ + k−)dk− ∧ dk+ ∧ dθ .137

With all the considerations discussed above, one can change the variable of the integral in138

the double-smeared bound (38),139

〈T f+ f−〉 ≥ −
1

2π2

∫ +∞

0

dµ+

∫ +∞

0

dµ−

∫

D
2(k− + k+)dk−dk+2π

1
(2π)3

µ+| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2
�

2k+
k− + k+

�

= −
1

2π4

∫ +∞

0

dµ+

∫ +∞

0

dµ−

∫

D
dk+dk−µ+k+| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2 (44)

where the integration domain is D = {k± ≥ 0|k+k− ≥ m2}.140

Equation (44) can be further simplified by changing variables. Setting u = k+ + µ+ and141

v = k− +µ−,142

〈T f+ f−〉 ≥ −
1

2π4

∫ ∞

0

du

∫ ∞

m2
u

dv

∫ u

m2
v

dk+

∫ v

m2
k+

dk−(u− k+)k+| ĝ+(u)|2| ĝ−(v)|2. (45)

Performing the k− and k+ integrals, we can present our main result.143

〈T f+ f−〉 ≥ −
1

2π4

∫ ∞

0

du

∫ ∞

m2
u

dv

�

vu3

6
−

m2u2

2
+

m4u
2v
−

m6

6v2

�

| ĝ+(u)|2| ĝ−(v)|2 (46)

It’s worth mentioning that the form of our bound looks simpler than the result for the144

bosonic case in [2]. What appears in our expression is simply an integral of polynomial with145

smearing function while the result (equation (50)) in [2] involves a parameter η remained to146

be fixed in the parameter space for a minimum value.147

The result can’t be further simplified without assuming the exact form of the smearing148

function. However, we can still analyze whether this integral converges qualitatively. The149

potential sources of divergence can be divided into two categories u→ 0 and u, v →∞. For150

the first category, as u → 0, the lower limit of v approaches∞. The domain of integration151

in v shifts towards∞, where | ĝ−(v)|2 decays very rapidly. Additionally, for small u, all terms152

in the integrand vanish, so there are no divergences as u → 0. For the second category, the153

dominant term in the integrand is vu3

6 . Since for large u and v, the decay of our smearing154

function is faster than any polynomial, this rapid decay regulates any polynomial growth in u155

and v. In conclusion, we reach a converged bound by smearing in two directions.156

In the next subsections, we will explore this bound in more specific circumstances, where157

we can find simpler analytic expressions or numerical results.158
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3.2 Massless, Gaussian-smeared bound159

Let us first investigate the massless case, where we can compute some analytic results for160

specific smearing functions. Take the Gaussian function | ĝ+(u)|2 = σ+e−(σ+u)2 (similarly161

| ĝ−(v)|2 = σ−e−(σ−v)2) 3 as a particular example of smearing function. By changing variables162

(ũ= σ+u and ṽ = σ−v), from equation (46) we obtain the expression for the bound,163

〈T f+ f−〉 ≥ −
1

12π4

∫ ∞

0

dũ

∫ ∞

0

d ṽ
1

σ3
+σ−

ũ3 ṽe−ũ2
e−ṽ2

(47)

= −
1

48π4σ3
+σ−

, (48)

which turns out to be a satisfactory finite negative number. So, we obtained a non-trivial164

lower bound for the doubled-smeared T++ for the simple case where the smearing is Gaus-165

sian. Moreover, σ+ has a larger effect on the bound comparatively to σ−. This asymmetry of166

the dependence on the deviations is expected since the energy-momentum tensor component167

considered has, by definition, a preferred spacetime direction.168

Since large σ± correspond to a wide smearing in spacetime, we expect the bound to ap-169

proach zero. This is indeed in agreement with the well-studied averaged null energy condition170

(ANEC) [22]. On the other hand, in the σ±→ 0 case, i.e. there is no smearing in spacetime,171

we obtain a trivial bound. This is expected since the expected value of the energy-momentum172

evaluated at a particular spacetime point is generally unbounded.173

Comparing with the result of [2] in the massless limit, we find that our fermionic result174

shares similar features with the bosonic case. Taking n = 4 and the limit of m→ 0, equation175

(1) in [2] turns into176

〈T smear
−− 〉 ≥ −

N2

(δ+)(δ−)3
, (49)

where N2 is simply a constant since m → 0. Now that we are evaluating T smear
++ instead of177

T smear
−− , the role of δ+ and δ− will exchange as expected and our pre-factor 1

48π4 takes place of178

the previous constant N2.179

As a consistency check, let us take σ− → 0 while keeping σ+ fixed. In this limit, the180

right-hand side of equation (48) diverges to −∞, once again yielding a trivial bound when181

smearing in a single direction.182

3.3 Mass dependence of the Gaussian-smeared bound183

One can also wonder about how this bound, which will now denote by B2, depends on the184

mass. Let us choose the two smearing functions to be Gaussians with standard deviationσ = 1,185

i.e. | ĝ+(x)|2 = | ĝ−(x)|2 = e−x2
. By dimensional analysis, we have [σ]=-1. Now the bound186

takes the following form:187

B2 = −
1

2π4

∫ ∞

0

du

∫ ∞

m2
u

dv

�

vu3

6
−

m2u2

2
+

m4u
2v
−

m6

6v2

�

e−(u
2+v2). (50)

We can numerically integrate the expression above to obtain the following relation between188

B2 and the mass, which is shown in Figure 1. Since we work with natural units, u and v are in189

the same unit as m, so [B2]= 4. It’s worth mentioning that the features of Figure 1 are close190

to the blue line in Figure 1 of [2], which again shows the similarity between fermionic and191

bosonic case.192

3We are defining our Gaussian function slightly different from the usual form 1p
2πσ

e−
1
2 (

u
σ )

2
here. This way, σ±

are the smearing lengths in spacetime. It’s convenient for the later comparison with the previous result because
the variables for our smearing function in the final expression are the wave number after the Fourier transform.
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B2

Figure 1: The bound B2 as a function of the mass m.

Note that in the highly massive region, the lower bound approaches zero, which also ap-193

pears in the bosonic case [2]. We can understand this result in the following qualitative way.194

Roughly speaking, quantum effects are relevant when the de Broglie wavelength of the parti-195

cle, ( h
mv ), is much greater than the characteristic size of the system, d. In our case, we simply196

take this d to be the smearing length. For small m, quantum behavior becomes prominent, but197

as m increases, classical behavior dominates. Given that the classical case satisfies the Null198

Energy Condition (NEC), the bound is anticipated to approach zero as m becomes large, which199

is verified numerically in the figure above.200

4 Conclusion201

In this work, we investigated the (Double) Smeared Null Energy Condition for the fermionic202

free theory in 4-dimensional flat Minkowski spacetime.203

We first obtained an inequality for the once-smeared T++. This inequality holds for all204

physically reasonable states. Actually, a fully rigorous formulation would require it to hold for205

all Hadamard states, as the claim in [3], since we are using the similar procedure. However,206

unlike the result in [3], we illustrated that our derived lower bound diverges. The reason for207

this is that instead of smearing T00 directly in time direction in [3], time is not fully smeared208

in our case when we only smear in direction x+ for T++.209

We addressed the triviality of this once-smeared T++ later by applying the smearing in210

two directions, providing a new energy condition. We offered explicit analytic results for the211

massless case and numerical insights for the mass-dependence of the latter bound in the case212

of Gaussian smearing.213

Regarding the outlook of this research, as mentioned in [1], understanding the behavior214

of DSNEC in interacting field theories remains still an open question. Though we are using215

different methods than those used in [1] to derive the DSNEC for fermions, our approach still216

specifically relies on the canonical quantization of the Dirac field and the form of the basis217

wavefunctions satisfying the Dirac equation. It remains to be further investigated whether the218

stress-tensor can be exactly expressed by terms involving an operator of the type OO† in an219

interacting theory.220

Moreover, our discussion is limited to Minkowski spacetime. Extending the DSNEC to221

curved spaces is a highly significant direction, given that it is crucial for its application in222

semiclassical gravity. It would then be interesting to explore a generalized version of our223

results in different curved spacetimes.224
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A Conventions231

In this paper, we work in 4 dimensional Minkowski spacetime with the “mostly minus” signa-232

ture in natural units (c = ħh= 1).233

The position light-cone coordinates are given by x± = t ± x1. The corresponding metric234

tensor for the coordinates (x+, x−, x2, x3) is,235

gµν =







0 1/2 0 0
1/2 0 0 0
0 0 −1 0
0 0 0 −1






. (A.1)

In momentum space we will denote k± =
1
2(ωk±k1) such that k · x = k+x++k−x−+ x i ·ki .236

In our convention, the 4-by-4 gamma matrices in the position space are defined as237

γ0 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






, (A.2)

238

γi =

�

0 σi
−σi 0

�

. (A.3)

Since we are working with the mostly-minus metric we obtain239

γ0 = γ
0, (A.4)

240

γi = −γi . (A.5)

In particular,241

γ+ = γ0 + γ1 = γ0 − γ1 =







1 0 0 −1
0 1 −1 0
0 1 −1 0
1 0 0 −1






, (A.6)

and we define242

A= γ0γ+ =







1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1






= 1−L, (A.7)

where 1 is the identity matrix, and L is the exchange matrix.243
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B Explicit computations for
∑

α u†
α(k)Auα(k)244

In Appendix B, the explicit computations for
∑

α u†
α(k)Auα(k) will be made.245

Note that
∑

α u†
α(k)Auα(k) =

2
V −
∑

α u†
α(k)Luα(k), using the decomposition A= 1−L and246

the normalization of uα(k). Then, we can write247

u1(k) =

�

a1
C b1

�

, (B.1)

where we define248

a1 =

√

√ωk +m
2ωkV

�

1
0

�

, (B.2)

b1 =
1

p

2ωk(ωk +m)V

�

1
0

�

, (B.3)

C = σ⃗ · k⃗. (B.4)

Using this notation we obtain that249

u†
1(k)Lu1(k) = a†

1σ1C b1 + b†
1C†σ1a1. (B.5)

The matrix σ1 appears in the non-zero blocks of L.250

Now,251

a†
1σ1C b1 =

√

√ωk +m
2ωkV

�

1 0
�

k1 1
p

2ωk(ωk +m)V
12×2

�

1
0

�

(B.6)

+

√

√ωk +m
2ωkV

�

1 0
�

k2 1
p

2ωk(ωk +m)V

�

i 0
0 −i

��

1
0

�

(B.7)

+

√

√ωk +m
2ωkV

�

1 0
�

k3 1
p

2ωk(ωk +m)V

�

0 −1
1 0

��

1
0

�

(B.8)

=
1
V

1
2ωk

(k1 + ik2). (B.9)

For the second term, we have something similar:252

a†
1σ1C b1 =

√

√ωk +m
2ωkV

�

1 0
�

k1 1
p

2ωk(ωk +m)V
12×2

�

1
0

�

(B.10)

+

√

√ωk +m
2ωkV

�

1 0
�

k2 1
p

2ωk(ωk +m)V

�

−i 0
0 i

��

1
0

�

(B.11)

+

√

√ωk +m
2ωkV

�

1 0
�

k3 1
p

2ωk(ωk +m)V

�

0 1
−1 0

��

1
0

�

(B.12)

=
1
V

1
2ωk

(k1 − ik2). (B.13)

With this we conclude that253

u†
1(k)Lu1(k) =

1
V

1
ωk

k1. (B.14)

The analogous computation for u2(k) yields the same result. For u2(k),254

u†
2(k)Lu2(k) =

1
V

1
ωk

k1. (B.15)
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Summing both, we obtain:255

uα(k)
†(k)Luα(k) =

2
V

1
ωk

k1. (B.16)

In the same way, we obtain the exact same result for vα(k)†(k)Lvα(k).256

vα(k)
†(k)Lvα(k) =

2
V

1
ωk

k1. (B.17)
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