SciPost Phys. 18, 106 (2025) ·
published 20 March 2025
|
· pdf
On top of a $D$-dimensional gapped bulk state, Low Entanglement Excitations (LEE) on $d(<D)$-dimensional sub-manifolds can have extensive energy but preserves the entanglement area law of the ground state. Due to their multi-dimensional nature, the LEEs embody a higher-category structure in quantum systems. They are the ground state of a modified Hamiltonian and hence capture the notions of 'defects' of generalized symmetries. In previous works, we studied the low-entanglement excitations in a trivial phase as well as those in invertible phases. We find that LEEs in these phases have the same structure as lower-dimensional gapped phases and their defects within. In this paper, we study the LEEs inside non-invertible topological phases. We focus on the simple example of $\mathbb{Z}_2$ toric code and discuss how the fusion result of 1d LEEs with 0d morphisms can depend on both the choice of fusion circuit and the ordering of the fused defects.