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Abstract

We study the performance of quantum thermal machines in which the working fluid of
the model is represented by a many-body quantum system that is periodically connected
with external baths via local couplings. A formal characterization of the limit cycles of
the set-up is presented in terms of the mixing properties of the quantum channel that
describes the evolution of the fluid over a thermodynamic cycle. For the special case
in which the system is a collection of spin 1/2 particles coupled via magnetization pre-
serving Hamiltonians, a full characterization of the possible operational regimes (i.e.,
thermal engine, refrigerator, heater and thermal accelerator) is provided: in this con-
text we show in fact that the different regimes only depend upon a limited number of
parameters (essentially the ratios of the energy gaps associated with the local Hamilto-
nians of the parts of the network which are in direct thermal contact with the baths).
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1 Introduction

In the last decade, enormous efforts have been devoted to investigate the manipulation of
heat and work in quantum devices (see e.g. Refs. [1–6] and references therein). On one side
this is motivated by the need to better understand how the energy dynamics of controlled
quantum systems influences the possibility of using them to implement quantum computation
and quantum information tasks. On the other side, the study of quantum thermal machines
is also motivated by the expectation that quantum technologies may also have a key role in
improving energetic optimization processes [7].

At the experimental level implementations of thermodynamic cycles involving few-level
quantum systems have been proposed in atoms and ions set-ups [8–11], NV centers [12,13],
quantum dots (see e.g. [14, 15]), superconducting nanostructures [16–19], nano electro-and
optomechanical devices [20]. Most of these setups are based on configurations where a few-
level coherent quantum system, partially under control through a series of classical knobs that
allow for the tuning of its Hamiltonian, plays the role of a working fluid that operates in out
of equilibrium conditions due to contacts with macroscopic thermal reservoirs. At theoretical
level the simplest model of this type assumes the presence of two thermal baths (one hot and
one cold) which exchange heat via the dynamical evolution of the fluid. Despite its simplicity
these models can be used to implement a series of fundamentally different thermal devices,
specifically heat engines, refrigerators, thermal accelerator, and heaters, depending on the
relative sign of of the heats and work the device exchanges with the baths and work sources,
respectively [21–23]. The optimal performances of these setups has been discussed within
operational assumptions, ranging from low-dissipation and slow driving regimes [24–27], to
shortcuts to adiabaticity approaches [28–30], to endoreversible engines [31].

References [32–38] studied the case where the driven working fluid is a spin chain, and
focussed on the possible impact of phase transitions, long-range forces and shortcuts to adia-
baticity on the engine performance. In the present paper we focus on a special type of models
where the working fluid is represented by a many-body quantum system that is driven by a
periodic sequence of operations (strokes) that either put it in thermal contact with one of the
bath, or let it freely evolve under the action of its (local) Hamiltonian, that is, at variance with
previous studies, e.g. [32–34], here the working fluid is driven by an external force that is
responsible for tuning on and off the local couplings. Besides that, no other external force is
applied onto the system. In this setting, exploiting the quantum channel formalism [39], we
show the emergence of limit cycles that force the system into out-of-equilibrium, metastable
states characterized by oscillatory behaviours which depend on the details of the system Hamil-
tonain. For the special case in which the working fluid is represented by a network of coupled
1/2-spins particles interacting through couplings that preserve the total magnetization along
the (longitudinal) ẑ direction, we show that the analysis simplifies thanks to the inner symme-
try of the model. In particular we prove that for those systems the signs of the heat fluxes of
the models only depend on a limited number of the parameters (the local energies gaps asso-
ciated with the part of the networks which are connected with the baths) allowing us to unveil
an universal law which analytically singles out the thermodynamic character of the cycle (i.e.,
which type of thermal device it realizes). Furthermore, supported by a series of compelling
numerical and theoretical evidences, we propose an ansatz according to which for these mod-
els the fundamental thermodynamic quantities that characterize the limit cycle can be exactly
determined by just studying the low temperature response of the system. We stress that if
proven correct, such conjecture will allow for a massive simplification of the problem, paving
the way for the numerical treatment of models with enormous numbers of spin elements.
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The manuscript is organized as follows. In Sec. 2 the model is introduced, together with
the notions of operation regimes and of limit cycles. In Sec. 3 we focus on the special case of
thermal engines where the working fluid is represented by a linear chain of spin 1/2 particles,
coupled via magnetization preserving Hamiltonians. Here in Sec. 3.1 we provide the universal
law that determines the thermodynamical character of the limit cycle, while in Sec. 3.2 we
present our ansatz solution that, if proven correct, will permit to determine the fundamental
quantities of the limit cycle by only studying the low temperature response of the model. To
enlighten the peculiarity of these models, an example of spin-chain model with Hamiltonian H
that does not preserve the longitudinal magnetization is finally analyzed in Sec. 4. Conclusions
are given in Sec. 5. The paper also includes an extended technical Appendix.

2 The model

We focus on quantum thermal machines whose (quantum) working fluid is represented by
a tripartite quantum system ACB composed by two external elements (A and B) and by an
internal one (C) that are coupled through a first-neighbour interaction Hamiltonian of the
form

H := HA+HAC +HC +HCB +HB , (1)

with the HX ’s representing local contributions of the subsystem X and with HX X ′ representing
instead the coupling terms. For such model we consider thermodynamic cycles schematically
represented in Fig. 1, where at regular time intervals, the A and B elements are put in thermal
contact with external reservoirs according to the following four-stroke procedures:

1. Thermalization with the hot bath: Site A is detached from the rest of the chain through
a sudden quench and weakly coupled to a hot bath (H) at temperature T1 until it
reaches complete thermalization on a timescale that is negligible with respect to the
free-evolution dynamics of the system (this last hypothesis is not fundamental: it is only
introduced to allow for some simplification in the analysis). Indicating with ρACB the
input state of the chain before the stroke, its associated output will be hence evolved
through the following mapping





ρACB → T1(ρACB) := ρA(β1)⊗ρCB ,

ρA(β1) := e−β1HA

ZA(β1)
, ρCB := TrA[ρACB] ,

(2)

where TrA[...] indicates the partial trace over A, and where ZA(β1) := Tr
�
e−β1HA
�

denotes
the partition function of system A at inverse temperature β1 := 1/(kB T1) (kB being the
Boltzmann constant).

2. Unitary evolution: The site A is attached back to the chain through a second quench,
and the entire chain is left free to evolve for a time τ1 inducing the mapping




ρA(β1)⊗ρCB → ρ̃ACB = U1(ρA(β1)⊗ρCB) := U(τ1) (ρA(β1)⊗ρCB)U†(τ1) ,

U(τ1) := e−iHτ1

(3)

(hereafter we set ħh= 1).
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Figure 1: Schematic representation of the typical four-strokes thermodynamic cycle
for a spin chain with N = 5 qubits. Notice that the system undergoes through a
total of 4 quenches (located at the beginning of each stroke) and two thermalization
events (associated with stroke 1 and stroke 3).

where again ZB(�2) := Tr
⇥
e��2HB

⇤
and �2 := 1/(KbT2), and where once more we assume

the thermalization time to be negligible.

4. Unitary evolution: The site B is attached back to the chain, and the entire chain is left
free to evolve for a time ⌧2
8
><
>:

�̃AC ⌦⇢B(�2)! U2(�̃AC ⌦⇢B(�2)) := UACB(⌧2) (�̃AC ⌦⇢B(�2))U
†
ACB(⌧2),

UACB(⌧2) := e�iHACB⌧2 .

(5)

During this cycle, the system changes his internal energy due to the exchanges with the
reservoirs and to the quenches. While the definition of the thermodynamic cycle does not
require in principle the latter (one could for instance assume that thermalization and free
evolution of the chain take place at the same time), they have been introduced with the specific
purpose to clarify the energy balance of the model. Indeed thanks to this assumption the
thermalization processes happen in weak-coupling conditions with the external reservoir, any
work extraction or injection related to the quenches connecting the baths can be neglected.
Thus, any energy changes during this phase must be attributed to heat dumped to the hot (H)
or to the cold (C) bath

QH := Tr[HA (⇢A�⇢A(�1))], QC := Tr[HB (⇢̃B �⇢B(�2))], (6)

where ⇢A := TrBC[⇢ACB] and ⇢̃B := TrBC[⇢̃ACB] are the reduced density matrices of A and B
just before the thermalization events (i.e. at the beginning of the stokes 1 and 3 of the cycle).
Similarly, the system is not in touch with any reservoirs during the unitary evolution, so no
heat exchanges are possible. Hence, the work extracted in a cycle can be again evaluated by
looking at the changes in internal energy during the various quenches

W1 := Tr[HAC⇢ACB], W2 := �Tr[HAC (⇢A(�1)⌦�CB)], (7)

W3 := Tr[HCB⇢̃ACB], W4 := �Tr[HCB (�̃AC ⌦⇢B(�2))], (8)

leading to a total work extracted from the system

W :=W1 +W2 +W3 +W4. (9)
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thermalization events (associated with stroke 1 and stroke 3).

3. Thermalization with the cold bath: The site B, detached from the rest of the chain,
is put in weak coupling with a cold bath (C) of temperature T2 ≤ T1 until complete
thermalization is reached





ρ̃ACB → T2(ρ̃ACB) := ρ̃AC ⊗ρB(β2) ,

ρ̃AC := TrB[ρ̃ACB] , ρB(β2) := e−β2HB

ZB(β2)
,

(4)

where again ZB(β2) := Tr
�
e−β2HB
�

and β2 := 1/(kB T2), and where once more we assume
the thermalization time to be negligible.

4. Unitary evolution: The site B is attached back to the chain, and the entire chain is left
free to evolve for a time τ2





ρ̃AC ⊗ρB(β2)→ U2(ρ̃AC ⊗ρB(β2)) := U(τ2) (ρ̃AC ⊗ρB(β2))U†(τ2) ,

U(τ2) := e−iHτ2 .

(5)

During this cycle, the system changes its internal energy due to energy exchanges with
the reservoirs (in the form of heat) and to the quenches (in the form of work). Note that
thanks to the assumption of weak-coupling with the external reservoir, any work extraction
or injection related to the quenches relative to connecting or disconnecting the baths can be
neglected, hence only the quenches that connect/disconnect a site to the rest of the chain
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are associated to some work.1 Note also that in our cycle heat and work exchanges never
occur simultaneously. While that condition is not necessary in order to have a well defined
thermodynamic cycle (one could, for instance, devise cycles where thermalization and free
evolution of the chain take place at the same time), that allows for a clear accounting of the
energy balance. Thus any energy exchange occurring when the hot (H) or cold bath (C) is
connected must be attributed entirely to heat dumped to the H bath, or the C respectively:

QH := Tr[HA (ρA−ρA(β1))] , QC := Tr[HB (ρ̃B −ρB(β2))] , (6)

where ρA := TrBC[ρACB] and ρ̃B := TrBC[ρ̃ACB] are the reduced density matrices of A and B
just before the thermalization events (i.e., at the beginning of the stokes 1 and 3 of the cycle).

Similarly, when the system is not in touch with any reservoirs, i.e., during the unitary evo-
lution, no heat exchanges are possible. Hence, the work extracted in a cycle can be again
evaluated by looking at the changes in internal energy during the quenches relative to con-
necting/disconnecting sites from the chain:

W1 := Tr[HACρACB] , W2 := −Tr[HAC (ρA(β1)⊗ρCB)] , (7)

W3 := Tr[HCBρ̃ACB] , W4 := −Tr[HCB (ρ̃AC ⊗ρB(β2))] , (8)

leading to a total work extracted from the system

W :=W1 +W2 +W3 +W4 . (9)

The Von-Neumann entropy increase of the chain during the cycle can instead be computed as

∆S := S(ρ̃AC ⊗ρB(β2))− S(ρACB) =∆ST1
+∆ST2

, (10)

with∆ST1
and∆ST2

the jumps associated to the thermalization events which obey the bounds

∆ST1
:= S(ρA(β1)⊗ρCB)− S(ρACB)≥ S(ρA(β1))− S(ρA)≥ −β1QH , (11)

∆ST2
:= S(ρ̃AC ⊗ρB(β2))− S(ρ̃ACB)≥ S(ρB(β2))− S(ρ̃B)≥ −β2QC , (12)

The first inequalities follows from the sub-additivity of the von Neumann entropy. The
last inequalities follows from noticing that S(ρA(β1)) − S(ρA) + β1QH = S(ρA||ρA(β1)),
and S(ρB(β2)) − S(ρ̃B) + β2QC = S(ρB||ρB(β2)), where the non negative quantity
S(ρ||σ) = Trρ lnρ − Trρ lnσ ≥ 0 denotes the Kullback-Liebler divergence (often referred
to as relative entropy).

A case of particular interest is represented by those scenarios where after a cycle the chain
returns to its original configuration, i.e.,

U2 (ρ̃AC ⊗ρB(β2)) = ρACB , (13)

a condition that is exhibited, e.g., when the model admits a limit cycle (see Sec. 2.2). When
this happens then by construction the energy balance at the end of a cycle, reads, in accordance
with the first principle of thermodynamics,

QH +QC +W = 0 . (14)

1To illustrate this point, consider the total (chain+reservoirs) Hamiltonian Htot = H + Hres + εHI where Hres is
the reservoirs Hamiltonian, HI is the chain-reservoir coupling Hamiltonian and ε is a dimensionless parameter. If
you abruptly turn on the coupling energy, the according coupling work is WI = Trρtot(H − H0) = εTrρtotH1. This
can be made arbitrarily small by decreasing ε. Our assumption is that ε is so small that WI is negligible compared
to the work done to attach/detach the end spins to the rest of the chain. Note that this may result in a slow
relaxation, hence long thermalization time, meaning very low power. These are all aspects that need to be taken
into account in practical realisations of the machine.
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Similarly, under the condition (13) we get ∆S = 0 which via (10)-(12), implies positivity
of the “Clausius sum”2

∆C := β1QH + β2QC ≥ 0 , (15)

in agreement with the second principle of thermodynamics. An aftermath of Eqs. (14,15) is
that only four operating regimes are possible, depending on the relative signs of QH , QC and
W [21–23]:

• For QH < 0, QC > 0, and W > 0, the machine acts as a conventional thermal engine
[E] that at each cycle produces positive work by moving heat from the hot bath to the
cold bath; the associated efficiency being bounded by the Carnot limit

η :=
W
|QH |

≤ 1− β1

β2
, (16)

thanks to (14) and (15).

• For QH > 0, QC < 0, and W < 0, the machine acts as a conventional refrigerator [R]
which extracts heat from the cold bath by absorbing external works and dissipating part
of it into the hot bath; the coefficient of performances fulfilling the Carnot inequality

COP :=
|QC |
|W | ≤

β1

β2 − β1
, (17)

thanks again to (14) and (15).

• For QH < 0, QC > 0, and W < 0 heat from the hot bath is moved into the cold bath while
using external work: under this condition the machine behaves as a thermal accelerator
[A];

• For QH > 0, QC > 0, and W < 0 the machine operates instead as a heater [H] which
converts external work into heat that is dumped in both baths.

2.1 System dynamics

Given the state ρ(n)CB of the subsystem CB at the end of the stroke 1 of the n-th cycle, its state

ρ
(n+1)
CB after one complete 4 strokes cycle reads:

ρ
(m+1)
CB := ΦCB(ρ

(m)
CB ) = TrA

�
U2 ◦ T2 ◦U1

�
ρA(β1)⊗ρ(m)CB

��
=
∑
α,α′

R(α,α′)
CB ρ

(m)
CB R(α,α′)†

CB . (18)

Here the symbol “◦” denotes super-operator concatenation and

R(α,α′)
CB :=

e−
β1ε

A
i +β2ε

B
j′

2p
ZA(β1)ZB(β2)

A〈 j|U(τ2)|i〉B〈i′|U(τ1)| j′〉A , (19)

where α = (i, j) is a collective index, and εA
i and |i〉A (resp. εB

j and | j〉B) are the energy
eigenvalues and eigenvectors of the local Hamiltonian HA (resp. HB). Note that we introduced
the symbol ΦCB to denote the map that evolves the system density matrix at the end of stroke
1 of one cycle. It is of crucial to observe that such map is a linear, completely positive, trace

2This is the discrete version of Clausius’ celebrated inequality
∫
δQ ≤ 0 [41](note the different sign convention

for heat adopted here, though). We refrain from referring to the non-equilibrium Clausius sum ∆C as an entropy
change, because the change in thermodynamic entropy is in fact a lower bound for it.
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preserving (LCPTC) map, or, in short a so called quantum channel [39]. The operators R(α,α′)
CB

represent the Kraus operators associated to the LCPTC map ΦCB.
By iteration we can hence write

ρ
(m+1)
CB = Φm

CB(ρ
(1)
CB) := ΦCB ◦ΦCB ◦ · · · ◦ΦCB︸ ︷︷ ︸

m times

(ρ(1)CB) . (20)

Similarly, indicating with ρ̃(m)AC the state of the subsystem AC at the end of the stroke 3 of the
m-th cycle we can write

ρ̃
(m+1)
AC = Φ̃AC(ρ̃

(m)
AC ) := TrB

�
U1 ◦ T1 ◦U2

�
ρ̃
(m)
AC ⊗ρB(β2)
��
=
∑
α,α′

R(α,α′)
AC ρ̃

(m)
AC R(α,α′)†

AC

= Φ̃m
AC(ρ̃

(1)
AC ) , (21)

where now Φ̃AC is a quantum channel with Kraus operators

R(α,α′)
AC :=

e−
β1ε

A
i +β2ε

B
j′

2p
ZA(β1)ZB(β2)

B〈 j|U(τ1)|i〉A〈i′|U(τ2)| j′〉B . (22)

A case of particular interest is obtained when either τ2 = 0 or τ1 = 0, that is when the
system becomes a two-strokes engine where a simultaneous thermalization of the first and
last qubit is followed by a free evolution of the chain for a time τ. In such scenario, after the
thermalizations, the system is described by a state of the form ρA(β1)⊗ρC ⊗ρB(β2), and thus
Eqs. (18) and (21) simplify to a map ΦC that acts only on the subsystem system C alone, i.e.

ρ
(m+1)
C = ΦC(ρ

(m)
C ) := TrAB

�
U
�
ρA(β1)⊗ρ(m)C ⊗ρB(β2)

��
=
∑
α,α′

R(α,α′)
C ρ

(m)
C R(α,α′)†

C

= Φm
C (ρ

(1)
C ) , (23)

with U the unitary super-operator associated with U(τ) and with

R(α,α′)
C :=

e−
β1ε

A
i +β2ε

B
j

2p
ZA(β1)ZB(β2)

AB〈i′, j′|U(τ)|i, j〉AB . (24)

2.2 Limit cycle

In the study of the asymptotic performance of the thermal machine, some important simplifi-
cations arise when the channels ΦCB, and Φ̃AC are mixing [42, 43]. We recall that a quantum
map Φ is said to be mixing when, irrespective of the initial condition ρ, the iterated application
of Φ will drive the system toward a fixed point ρ(⋆) represented by the unique configuration
that is left invariant by the map, i.e.

lim
m→∞Φ

m(ρ) = ρ̃(⋆) , Φ(ρ(⋆)) = ρ(⋆) . (25)

Mixing channels form a dense set on the space of quantum transformations [42] while the set
of non-mixing maps is a zero measure set. Physically this means that while mixing channels are
the norm, non-mixing channels are the exception and any arbitrary small random perturbation
is sufficient to make them mixing.

For the model we are studying here this translates into the fact that for almost any choice
of τ1 and τ2, ΦBC and Φ̃AC will obey such property with fixed points ρ(⋆)CB and ρ̃(⋆)AC connected
by the identities

ρ
(⋆)
CB = TrA

�
T1 ◦U2

�
ρ̃
(⋆)
AC ⊗ρB(β2)
��

, ρ̃
(⋆)
AC = TrB

�
T2 ◦U1

�
ρA(β1)⊗ρ(⋆)CB

��
. (26)
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For the magnetization preserving spin-chain Hamiltonian model of Sec. 3, a proof of this fact
is explicitly shown in Appendix A. Physically, the mixing property of ΦCB and Φ̃AC implies that
independently from the system initialization, as m increases, our thermodynamical cycle will
be driven toward the following limit cycle,

ρA(β1)⊗ρ(⋆)CB
−→

(stroke 2) ρ̃
(⋆)
ACB := U(τ1)
�
ρA(β1)⊗ρ(⋆)CB

�
U†(τ1)

x(stroke 1)

y(stroke 3)

ρ
(⋆)
ACB := U(τ2)
�
ρ̃
(⋆)
AC ⊗ρB(β2)
�

U†(τ2)
←−

(stroke 4) ρ̃
(⋆)
AC ⊗ρB(β2) ,

(27)

which fulfils the close loop condition (13) enabling us to invoke the identities (14)–(15) [no-
tice that in the above expression ρ(⋆)CB := TrA[ρ

(⋆)
ACB], ρ̃

(⋆)
AC := TrB[ρ̃

(⋆)
ACB] corresponds to the

reduced density operators of ρ(⋆)ACB and ρ̃(⋆)ACB respectively]. Under this condition the average
heat exchanges and work produced per cycle can be computed in terms of the corresponding
quantities associated with the limit cycle, i.e.,

QH := lim
M→∞

∑N
m=1 Q(m)H

M
= lim

M→∞

∑M
m=1 Tr
�
HA

�
ρ
(m)
A −ρA(β1)
��

M
= Tr
�
HA

�
ρ
(⋆)
A −ρA(β1)
��
=: Q(⋆)H , (28)

QC := lim
M→∞

∑N
m=1 Q(m)C

M
= lim

M→∞

∑M
m=1 Tr
�
HB

�
ρ̃
(m)
B −ρB(β2)
��

M
= Tr
�
HB

�
ρ̃
(⋆)
B −ρB(β2)
��
=: Q(⋆)C , (29)

W := lim
M→∞

∑M
m=1 W (m)

M
= −(Q(⋆)H +Q(⋆)C ) =: W (⋆) , (30)

∆C := lim
M→∞

∑M
m=1(β1Q(m)H + β2Q(m)C )

M
= β1Q(⋆)H + β2Q(⋆)C ) =:∆C(⋆) , (31)

with ρ(⋆)A := TrCB[ρ
(⋆)
ACB] and ρ̃(⋆)B := TrAC[ρ̃

(⋆)
ACB] being, respectively, the reduced density ma-

trices of A and B at beginning of stroke 1 and 3 of the limit cycle. Notice finally that in the
two-stroke regime (22) the loop (27) reduces to

ρA(β1)⊗ρ(⋆)C ⊗ρB(β2)⇄ U(τ)
�
ρA(β1)⊗ρ(⋆)C ⊗ρB(β2)

�
U†(τ) , (32)

with ρ(⋆)C the fixed point state of ΦC , while Eqs. (28)–(30) hold true by identifying ρ(⋆)A and

ρ̃
(⋆)
B with reduced density matrices of U(τ)

�
ρA(β1)⊗ρ(⋆)C ⊗ρB(β2)

�
U†(τ).

3 Magnetization preserving spin-chain models

In this section, we analyse the case where subsystems A and B are the first and last element
of a linear chain of N(≥ 2) spin-1/2 particles coupled with an Hamiltonian that preserves the
total magnetization along the longitudinal z-axis SZ :=

∑N
i=1 SZ

i , i.e.,

H =
N∑

i=1

EiS
Z
i +

N−1∑
i=1

4Ji

�
SX

i SX
i+1 + SY

i SY
i+1

�
+

N−1∑
i=1

4Ki

�
SX

i SY
i+1 − SY

i SX
i+1

�
+

N−1∑
i=1

4FiS
Z
i SZ

i+1 , (33)

where for i = 1, · · · , N , SX ,Y,Z
i represent the X , Y , Z spin operators of the i-th particle of the

model, and where the real parameters Ei define the local energy terms, Ji , Ki spin exchange
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terms, and Fi the standard Ising coupling terms. As anticipated in the previous section, for
almost any choice of the system parameters the quantum maps ΦCB and Φ̃AC of the model
exhibit mixing properties. This fact is explicitly proved in Appendix A where we also show that
the associated fixed point states (26) commute with the associated magnetization operators
SZ

CB :=
∑N

i=2 SZ
i and SZ

AC :=
∑N−1

i=1 SZ
i , i.e.,

¨
ΦCB mixing & ΦCB(ρ

(⋆)
CB) = ρ

(⋆)
CB =⇒ [ρ(⋆)CB, SZ

CB] = 0 ,

Φ̃AC mixing & Φ̃AC(ρ̃
(⋆)
AC ) = ρ̃

(⋆)
AC =⇒ [ρ̃(⋆)AC , SZ

AC] = 0 .
(34)

Our analysis will target the case of mixing maps only, by analyzing the performance of the
according limit . Under this conditions, in Sec. 3.1 will shall prove that the operation regimes
of the machine are fully determined by local properties of the sites A and B. In Sec. 3.2 we
will then proceed with the explicit evaluation of the heat exchanges of the limit cycle.

3.1 Operation regimes

In the study of the limit cycles of magnetization preserving spin-chains few important simpli-
fications arise.

First of all it can be shown that the following implication holds:

β1E1 = β2EN =⇒ Q(⋆)H =Q(⋆)C = 0 . (35)

Indeed, indicating with SZ
C :=
∑N−1

i=2 SZ
i the longitudinal magnetization of the C part of the

spin-chain, due to the fact that H and SZ commute, one can verify that for κ = β1E1 = β2EN
the state

ρA(β1)⊗
e−κSZ

C

Tr[e−κSZ
C ]
⊗ρB(β2) =

e−κSZ

Tr[e−κSZ ]
, (36)

is invariant under the transformations U2 ◦ T1 ◦ U1. Accordingly, Eq. (18) then forces us to
identify the associated reduced density matrix w.r.t. to BC as the (unique) fixed point of the
mixing channel ΦCB, leading to the condition

ρ
(⋆)
CB = TrA

�
e−κSZ

Tr[e−κSZ ]

�
=⇒ ρ

(⋆)
B = TrAC

�
e−κSZ

Tr[e−κSZ ]

�
= ρB(β2) , (37)

which via Eq. (29) finally leads to Q(⋆)C = 0 – the proof that Q(⋆)H = 0 follows by the same
reasoning noticing that (36) is also invariant under U1 ◦ T2 ◦U2 and invoking (21) and (28).

The second important simplification that applies to the models (33) is that, as schematically
shown in Fig. 2, the operation regimes [H], [R], [E], and [A] can be directly linked to the ratio
between the local energy parameters E1 and EN of A and B, via the following simple rules

EN
E1
< 0 =⇒ [H] , 0< EN

E1
<
β1
β2
=⇒ [R] ,

β1
β2
<

EN
E1
< 1 =⇒ [E] , EN

E1
> 1 =⇒ [A] .

(38)

Equation (38) stems directly from the fact that for Hamiltonians of the form (33) the heat
exchanges of the limit cycle can be related by the following identity:

Q(⋆)H

E1
+

Q(⋆)C

EN
= 0 . (39)

Such a symmetry is a direct consequence of the fact that the total magnetisation along Z is a
conserved quantity (an example of spin-chain model with not commuting H and S which do
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not satisfy (39) will be presented in Sec. 4). To see this explicitly observe that since U(τ1) and
U(τ2) preserves the total longitudinal magnetization, from Eq. (27) it follows that

Tr
�
SZ ρ̃

(⋆)
ACB

�
= Tr
�
SZ U(τ1)
�
ρA(β1)⊗ρ(⋆)CB

�
U†(τ1)
�
= Tr
�
SZ
�
ρA(β1)⊗ρ(⋆)CB

��
, (40)

Tr
�
SZρ

(⋆)
ACB

�
= Tr
�
SZ U(τ2)
�
ρ̃
(⋆)
AC ⊗ρB(β2)
�

U†(τ2)
�
= Tr
�
SZ
�
ρ̃
(⋆)
AC ⊗ρB(β2)
��

. (41)

Indicating with SZ
D the logintudinal magnetization of the segment D of the chain, and writing

SZ = SZ
A + SZ

C + SZ
B we can now transform the above expressions in the following identities

TrAC[(S
Z
A + SZ

C )ρ̃
(⋆)
AC ] + TrB[S

Z
B ρ̃
(⋆)
B ] = TrA[S

Z
AρA(β1)] + TrCB[(S

Z
C + SZ

B )ρ
(⋆)
CB] , (42)

TrA[S
Z
Bρ
(⋆)
A ] + TrCB[(S

Z
C + SZ

B )ρ
(⋆)
CB] = TrAC[(S

Z
A + SZ

C )ρ̃
(⋆)
AC ] + TrB[S

Z
BρB(β2)] , (43)

which substracted term by term, finally lead to

TrA

�
SZ

A (ρ
(⋆)
A −ρA(β1))
�
+ TrB

�
SZ

B (ρ
(⋆)
B −ρB(β2))
�
= 0 , (44)

that corresponds to (39) thanks to the fact that HA = E1SZ
A and HB = EN SZ

B . The derivation
of (38) then follows by using (39) to rewrite Eqs. (14), (15) as

W (⋆) = − (Q(⋆)H +Q(⋆)C ) = −Q(⋆)H

�
1− EN

E1

�
, (45)

∆C(⋆) = β1Q(⋆)H + β2Q(⋆)C = β2Q(⋆)H

�
β1

β2
− EN

E1

�
≥ 0 . (46)

Notice in fact that from Eq. (45) we get that W (⋆) and Q(⋆)H can have the same sign if and
only if EN

E1
≤ 1, while Eq. (46) imposes the conditions





EN
E1
>
β1
β2

⇔ Q(⋆)H ≤ 0 , Q(⋆)C ≥ 0 ,

EN
E1
<
β1
β2

⇔ Q(⋆)H ≥ 0 , Q(⋆)C ≤ 0

(47)

(for EN
E1
= β1

β2
no definite sign can be assigned to Q(⋆)H , Q(⋆)C ). A close inspection of the above

relations reveals that indeed as predicted in Eq. (40), for EN
E1
< 0 the system behaves as a heater

[H], while for EN
E1
> 1 it behaves as a thermal accelerator [A]. On the contrary for 0< EN

E1
<
β1
β2

the chain operates as a refrigerator [R] and for β1
β2
<

EN
E1
< 1 as a thermal engine regime [E]. In

these latter two cases, Eqs. (45) and (39) also fully determine the associated efficiencies with
formulas

COP =
|Q(⋆)C |
|W (⋆)| =

EN

E1 − EN
, η=

|W (⋆)|
|Q(⋆)H |

= 1− EN

E1
, (48)

that closely resemble those one would get for a two-level-system quantum Otto engine or a
for a two-stroke two-qubit engine [21,23,44].

3.2 Evaluating the heat exchanges

According to Eqs. (28)–(31) to compute the energy exchanges of the limit cycle one needs to
determine the fixed point state ρ(⋆)CB of the map ΦBC . Such task can be approached analyti-
cally only for very small chains (N ≤ 3) or under special assumptions on the system settings.
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EN /E1

QH
QC
W

Figure 2: Operation regimes of the chain as a function of the parameter EN/E1 as
established in Sec. 3: Red area heater [H], light blue refrigerator [R], green thermal
engine [E], yellow thermal accelerator [A]. The red, blue and green curves represents
the values of Q(⋆)H , Q(⋆)C and W (⋆) as computed in Sec. 3.2.3. In the plot we assume
N = 8 spins and fixed the temperature ratio β1/β2 = 0.5 and τ = 3.1. QH ,QC , W
are expressed in units of E1.

Nonetheless from our analysis it emerges a universal behaviour that we formalize in the fol-
lowing ansatz: 




Q(⋆)C = g(β1E1,β2EN ) f4(τ1,τ2)EN ,

Q(⋆)H = −g(β1E1,β2EN ) f4(τ1,τ2)E1 ,

W (⋆) = g(β1E1,β2EN ) f4(τ1,τ2)(E1 − EN ) ,
∆C(⋆) = g(β1E1,β2EN ) f4(τ1,τ2)(β2EN − β1E1) ,

(49)

where

g(β1E1,β2EN ) :=
eβ2EN − eβ1E1

(eβ2EN + 1)(eβ1E1 + 1)
, (50)

and where for all the quantities, the dependence upon the free evolution time intervals τ1 and
τ2 is carried out by one and the same (model dependent) function f4 that is independent of
the bath temperatures and fulfils the property

0≤ f4(τ1,τ2)≤ 1 . (51)

Notice that the last two identities in Eq. (49) are just a direct consequence of the first two and of
Eqs. (45) and (46), and that the entire set of equations can also be applied for the special case
of the two-strokes cycle of Eq. (23) by replacing f4(τ1,τ2) with f2(τ) := f4(τ, 0) = f4(0,τ).3

3The symmetry between f4(τ, 0) and f4(0,τ) being a direct consequence of the fact that the 2 stokes machine
can be equivalently obtained either setting τ1 or τ2 to zero.
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Figure 3: Q(⋆)C /[gEN ] as a function of τ and β1 (expressed in units of E−1
1 ) for a two-

stroke cycle on a chain of length N = 4. Here E1 = 1, E2 = 1.2, E3 = 1.4, E4 = 1,
J1 = 1.1, J2 = 0.2, J3 = 0.25, Ki = 0, Fi = 0.

We remark finally that Eqs. (49)–(51) assign values to Q(⋆)C , Q(⋆)H and W (⋆) which are in perfect
agreement with the regimes (38) established in Sec. 3.1.

While a general proof of Eq. (49) for all possible choices of the Hamiltonian (33) is still
missing, in the subsequent sections we report analytical and numerical evidences that suggest
that this is indeed the case. We stress that being able to establish the validity of the ansatz
above would allow one to enormously simplify the study of the model reducing it to just the
determination of the function f4, a task which thanks to the fact that such term does not
depend upon T1 and T2, can be easily accomplished through the low-temperature limit analysis
reported in Sec. 3.2.2.

Figure 3 reports a density plot of the quantity Q(⋆)C /[gEN ] as a function of τ and β1 for
a two-stroke cycle and a chain of length N = 4. The plot clearly shows that there is no de-
pendence on β1 for a chain of length N > 3. The same identical plot results if plotting the
same quantity as a function of τ and β2, meaning that it depends neither on β1 nor on β2 (not
shown). Due to Eq. (39) it follows that likewise Q(⋆)H /[gE1] does not depend on β1,β2.

3.2.1 Small chain limit

The model allows for full analytical solution for a spin-chain of N = 2 elements. In this case
the C section of the chain is absent and A and B are directly connected by an Hamiltonian
coupling of the form

H = E1SZ
1 + E2SZ

2 + 4J
�
SX

1 SX
2 + SY

1 SY
2

�
+ 4K
�
SX

1 SY
2 − SY

1 SX
2

�
+ FSZ

1 SZ
2 , (52)
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Figure 4: Plot of the function f4(τ1,τ2) of Eq. (58) as a function of τ1 and τ2 for
three values of W 2/(4ω2) – explicitly 0.7 (a), 0.45 (b), and 0.15 (c).

which can be formally obtained from (33) by identifying C with (say) B. By direct computation
it turns out that the unique fixed point of the map ΦB is provided by the density operator ρ(⋆)B
that, in agreement with Observation 2 of App. A, is diagonal in the eigenbasis {|0〉B, |1〉B} of
the magnetization operator SZ

B with diagonal entries

B〈1|ρ(⋆)B |1〉B =
e−
β1E1

2

Z1(β1)
|SH(τ2)|2|CH(τ1)|2 + e−

β2E2
2

Z2(β2)
|CH(τ2)|2

1− |SH(τ1)|2|SH(τ2)|2
, (53)

B〈0|ρ(⋆)B |0〉B =
e
β1E1

2

Z1(β1)
|SH(τ2)|2|CH(τ1)|2 + e

β2E2
2

Z2(β2)
|CH(τ2)|2

1− |SH(τ1)|2|SH(τ2)|2
, (54)

where

CH(τ) := cos(ωτ) + i sin(ωτ)
E2 − E1

2ω
, (55)

SH(τ) := − sin(ωτ)
J − iK

2ω
, (56)

ω :=

p
(E2 − E1)2 + |J |2 + |K |2

2
. (57)

Replacing this into Eqs. (28)–(31) allows to express the thermodynamic quantities of the model
as in Eq. (49)

f4(τ1,τ2) =
W 2

4ω2

sin2(ωτ1) + sin2(ωτ2)− 2 W 2

4ω2 sin2(ωτ1) sin2(ωτ2)

1− W 4

16ω4 sin2(ωτ1) sin2(ωτ2)
, (58)

where W 2 := J2 + K2 (see Fig. 4).
Other cases which we solved analytically are the two-strokes cycles (23) of spin-chains of

N = 3 elements with Hamiltonian

H =
N∑

i=1

EiS
Z
i +

N−1∑
i=1

4Ji[S
X
i SX

i+1 + SY
i SY

i+1] . (59)

In this scenario we find it convenient to express the unitary operator U(τ) in the longitudinal
magnetization basis where it assumes the following block-diagonal form

U(τ) =




U (3)(τ) 0 0 0

0 U (2)(τ) 0 0

0 0 U (1)(τ) 0

0 0 0 U (0)(τ)




, (60)
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with U ( j)(τ) representing the matrix associated with the subspace of ACB that has j spins
up along the z-th direction. For the selected Hamiltonian one can show that the following
constraint holds





a(τ) = |U (1)12 (τ)|2 = |U (2)12 (τ)|2 = |U (1)21 (τ)|2 = |U (2)21 (τ)|2 ,

b(τ) = |U (1)23 (τ)|2 = |U (2)23 (τ)|2 = |U (1)32 (τ)|2 = |U (2)32 (τ)|2 ,

c(τ) = |U (1)31 (τ)|2 = |U (2)31 (τ)|2 = |U (1)13 (τ)|2 = |U (2)13 (τ)|2 .

(61)

From this one can explicitely compute the fixed point ρ(⋆)C of the map ΦC of Eq. (23) obtaining
a density matrix which in the local energy basis of C has elements

C〈1|ρ(⋆)C |0〉C = 0 , (62)

C〈1|ρ(⋆)C |1〉C =
e−1 e−2
�
|U (2)12 |2+|U (2)32 |2
�
+e−1 e+2 |U (1)21 |2+e+1 e−2 |U (1)23 |2

e−1 e−2
�
|U (2)12 |2+|U (2)32 |2
�
+e−1 e+2
�
|U (1)21 |2+|U (2)23 |2
�
+e+1 e−2
�
|U (1)23 |2+|U (2)21 |2
�
+e+1 e+2
�
|U (1)12 |2+|U (1)32 |2
� ,

C〈0|ρ(⋆)C |0〉C =
e−1 e+2 |U (2)23 |2+e+1 e−2 |U (2)21 |2+e+1 e+2

�
|U (1)12 |2+|U (1)32 |2
�

e−1 e−2
�
|U (2)12 |2+|U (2)32 |2
�
+e−1 e+2
�
|U (1)21 |2+|U (2)23 |2
�
+e+1 e−2
�
|U (1)23 |2+|U (2)21 |2
�
+e+1 e+2
�
|U (1)12 |2+|U (1)32 |2
� ,

where we set e±1 := e±
β1E1

2 and e±2 := e±
β2E3

2 in order to write the equations more compactly.
With the help of the above expressions Eqs. (28)–(31) finally lead to the identities (49) with
f2 given by

f2(τ) =
a(τ)b(τ) + b(τ)c(τ) + c(τ)a(τ)

a(τ) + b(τ)
. (63)

3.2.2 Low-temperature limit

The complete analytical evaluation of the energy exchanges at the limit cycle for a generic
Hamiltonian is a hard task as the complexity of the problem grows exponentially with the
size of the chain. One way to circumvent this issue is to focus on the limit in which the
temperatures of the baths are much smaller than the energy gaps of the qubits with which
they interact. We consequently define the small dimensionless constant x1 := e−β1E1 and
x2 := e−β2EN to determine the thermodynamic properties up to first order in such parameters.
For the sake of simplicity, we shall also restrict the analysis to the two-strokes version of the
model whose asymptotic performances are defined in Eq. (23): the result we obtain however
can be generalized to the more general four-strokes scenario.

Indicating withΦ[0]C the LCPTP mapΦ(0,0)
C which describes the evolution of C when both the

baths of the model are initialized at zero temperature, following the derivation of Observation
3 of App. A, in the low-temperature limit, the first-order expansion in x j of the channel ΦC
can be written as

ΦC = Φ
[0]
C +

2∑
j=1

x j∆Φ
[ j]
C , (64)

∆Φ
[1]
C := Φ(1,0)

C −Φ(0,0)
C , ∆Φ

[2]
C := Φ(0,1)

C −Φ(0,0)
C , (65)

where as in Eq. (A.6) (resp. (A.7)) the map Φ(1,0)
C (Φ(0,1)

C ) represents scenarios where the bath
of A (B) inject exactly a single spin-up on the system while the bath B (A) is still at zero-
temperature. It is worth remarking that while being an approximation of the real limit cycle
transformation of the model (it misses all the higher order contributions in x j), the map (64)
is a proper LCPTP channel as it is expressed as a convex combination of maps that have the
same property. Accordingly to study its mixing properties we can apply to it the mathematical
tools developed in [42,43]. Furthermore, the same derivation given in Observation 1 of App. A
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can be used to show that, similarly to what happens in Eq. (34), if the channel (64) is mixing,
then its fixed point state ρ(⋆)C must commute with the longitudinal magnetization operator SZ

C .

To compute ρ(⋆)C we express it as a linear expansion in the x j parameters

ρ
(⋆)
C = ρ

(⋆)
C [0] +

2∑
j=1

x j∆ρ
(⋆)
C [ j] , (66)

where the zero-th order term ρ
(⋆)
C [0] is the fixed point of Φ[0]C (i.e., the pure state |0 · · ·0〉C

where all the spins of the C section are pointing down – see Observation 4 of App. A), while
∆ρ

(⋆)
C [ j] are operators that need to be determined. Replacing (64), (66) into the fixed point

equation ΦC(ρ
(⋆)
C ) = ρ

(⋆)
C , the first order terms in x j yield

∆ρ
(⋆)
C [ j] = Φ

[0]
C (∆ρ

(⋆)
C [ j]) +∆Φ

[ j]
C (ρ

(⋆)
C [0]) , (67)

which upon n iterations can be casted in the equivalent form

∆ρ
(⋆)
C [ j] = (Φ

[0]
C )

n(∆ρ(⋆)C [ j]) +
n−1∑
k=0

(Φ[0]C )
k(∆Φ[ j]C (ρ

(⋆)
C [0])) . (68)

Since the channel Φ[0]C is mixing with fixed point ρ(⋆)C [0], in the n→∞ limit the first contri-
bution can be neglected due to the identity [42,43]

lim
n→∞(Φ

[0]
C )

n(∆ρ(⋆)C [ j]) = Tr
�
∆ρ

(⋆)
C [ j]
�
ρ
(⋆)
C [0] = 0 , (69)

where we used the fact that ∆ρ(⋆)C [ j] must have zero trace in order to ensure the proper

normalization of ρ(⋆)C – see Eq. (66). Accordingly we can replace (69) with

∆ρ
(⋆)
C [ j] =

∞∑
k=0

(Φ[0]C )
k(∆Φ[ j]C (ρ

(⋆)
C [0])) , (70)

that expresses ∆ρ(⋆)C [ j] in terms of purely dynamical parameters of the model (i.e., the free

evolution time τ and the Hamiltonian couplings). Observe that since ρ(⋆)C [0] is block diagonal
(bd) with respect to the magnetization eigenbases decomposition of C , and since, as discussed
in Observation 2 of App. A, Φ(0,0)

C , Φ(1,0)
C and Φ(0,1)

C are bd preserving transformations, it turns

out that ∆ρ(⋆)C [ j] is also a bd operator, in agreement with the fact that (66) must commute

with SZ
C . Notice also that since Φ(1,0)

C and Φ(0,1)
C can at most increase by 1 the total number

of spin-up in C , while Φ(0,0)
C always tend to reduce it, Eq. (70) implies that ∆ρ(⋆)C [ j] can have

components only on the magnetization eigenspaces with at most one single spin up in C .
Specifically, reminding that ρ(⋆)C [0] is the unique non trivial operator in the subspace of C
which has no spin-up terms, we can write them as

∆ρ
(⋆)
C [ j] = γ j(ϱ

(⋆)
C [ j]−ρ(⋆)C [0]) , (71)

with ϱ(⋆)C [ j] being a density matrix of C which contains exactly one excitation, and γ j ∈ [0,1]
(indeed the possibility that ϱ(⋆)C [ j] have negative eigenvalues as well as, the possibility to have

γ j > 1, are both ruled out by the positivity of ρ(⋆)C ).
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Following (28)-(29) we can now compute the thermodynamic quantities of the limit cycle
by determining the operators

ρ
(⋆)
A −ρA(β1) := TrCB

�
U(τ)
�
ρA(β1)⊗ρ(⋆)C ⊗ρB(β2)

��
−ρA(β1) ,

ρ
(⋆)
B −ρB(β2) := TrAC

�
U(τ)
�
ρA(β1)⊗ρ(⋆)C ⊗ρB(β2)

��
−ρB(β2) , (72)

which, using Eq. (66) and the fact that at first order one has ρA(β1) = |0〉A〈0|+x1(|1〉A〈1|−|0〉A〈0|),
ρB(β2) = |0〉B〈0|+ x2(|1〉B〈1| − |0〉B〈0|), can be written as

ρ
(⋆)
A −ρA(β1) =

2∑
j=1

x jΘ
( j)
A (τ) , ρ

(⋆)
B −ρB(β2) =

2∑
j=1

x jΘ
( j)
B (τ) , (73)

with




Θ
(1)
A (τ) := TrCB

�
U(τ)
�
|00〉AB〈00| ⊗∆ρ(⋆)C [1]) + |10 · · ·0〉ACB〈10 · · ·0|

��
− |1〉A〈1| ,

Θ
(2)
A (τ) := TrCB

�
U(τ)
�
|00〉AB〈00| ⊗∆ρ(⋆)C [2]) + |0 · · ·01〉ACB〈0 · · ·01|

��
− |0〉A〈0| ,

Θ
(1)
B (τ) := TrAC

�
U(τ)
�
|00〉AB〈00| ⊗∆ρ(⋆)C [1]) + |10 · · ·0〉ACB〈10 · · ·0|

��
− |0〉B〈0| ,

Θ
(2)
B (τ) := TrAC

�
U(τ)
�
|00〉AB〈00| ⊗∆ρ(⋆)C [2]) + |0 · · ·01〉ACB〈0 · · ·01|

��
− |1〉B〈1| .

(74)

From Eqs. (28)–(29) it then follows

Q(⋆)C = EN

�
x1χ

(1)
A (τ) + x2χ

(2)
A (τ)
�

, Q(⋆)H = E1

�
x1χ

(1)
B (τ) + x2χ

(2)
B (τ)
�

, (75)

where for j = 1, 2 we have

χ
( j)
A (τ) := Tr
�
SZ

AΘ
( j)
A (τ)
�

, χ
( j)
B (τ) := Tr
�
SZ

VΘ
( j)
B (τ)
�

. (76)

These expressions can finally be simplified by invoking the symmetries (35) and (39) which
applied to the present case impose the constraints

χ
(1)
A (τ) = −χ(2)A (τ) = χ

(2)
B (τ) = −χ(1)B (τ) . (77)

Indentifying hence f2(τ) with −χ(1)A (τ) we can finally write




Q(⋆)C = (x2 − x1) f2(τ)EN ,

Q(⋆)H = −(x2 − x1) f2(τ)E1 ,

W (⋆) = (x2 − x1) f2(τ)(E1 − EN ) ,
∆C(⋆) = (x2 − x1) f2(τ)(β2EN − β1E1) ,

(78)

which correspond to the low-temperature counterparts of Eq. (49).
The great advantage of Eq. (78) is that the only part of the Hilbert space that leads to

useful contributions to the relevant thermodynamic quantities contains just one spin up and
all spin down. This leads to an exponential speed-up in the computation of f2(τ) which, in
virtue of the ansatz (49), allows for the study of chains long up to thousands of sites, as shown
in Fig. 5. A slightly more compact expression for f2(τ) can be obtained by noticing that since
the operator Ω := |00〉AB〈00| ⊗∆ρ(⋆)C [1] + |10 · · ·0〉ACB〈10 · · ·0| is bd and contains no more
than one spin up, so does its evolution under U(τ). Accordingly we can write

A〈0|TrCB[U(τ)(Ω)]|0〉A = Tr[U(τ)(Ω)]− A〈1|TrCB[U(τ)(Ω)]|1〉A
= 1− 〈10 · · ·0|U(τ)(Ω)|10 · · ·0〉 ,
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where used the fact that Ω (and hence U(τ)(Ω)) has trace one. Expressing

SA
Z =
|1〉A〈1| − |0〉A〈0|

2
=

IA

2
− |0〉A〈0| , (79)

and observing that Θ(1)A (τ) is a traceless operator we can then write

f2(τ) = −Tr
�
SZ

AΘ
(1)
A (τ)
�
= A〈0|Θ(1)A (τ)|0〉A = A〈0|TrCB[U(τ)(Ω)]|0〉A (80)

= 1− 〈10 · · ·0|U(τ)(Ω)|10 · · ·0〉 .

This can be further simplified by expanding Ω in terms of its constituents: in particular using,
Eq. (71) we get

〈10 · · ·0|U(τ)(Ω)|10 · · ·0〉= 〈10 · · ·0|U(τ)(|00〉AB〈00| ⊗∆ρ(⋆)C [1])|10 · · ·0〉 (81)

+ |〈10 · · ·0|U(τ)|10 · · ·0〉|2
= γ1〈10 · · ·0|U(τ)(|00〉AB〈00| ⊗ϱ(⋆)C [1])|10 · · ·0〉
+ |〈10 · · ·0|U(τ)|10 · · ·0〉|2

= γ1

|C |∑
ℓ=1

pℓ|〈10 · · ·0|U(τ)|0φℓ0〉|2 + |〈10 · · ·0|U(τ)|10 · · ·0〉|2 ,

where we used the fact that U(τ) leaves ρ(⋆)C [0] invariant, and where for ℓ ∈ {1, · · · , |C |},
|φℓ〉C , pℓ are respectively the eigenvectors and the associated eigenvalues of the density matrix
ϱ
(⋆)
C [1]. Expanding finally the norm of vector 〈10 · · ·0|U(τ) w.r.t. to the single excitation basis

of the chain {|10 · · ·0〉, |0φ10〉, · · · , |0φ|C |0〉, |0 · · ·01〉}, i.e.,

1= ∥〈10 · · ·0|U(τ)∥2 = |〈10 · · ·0|U(τ)|10 · · ·0〉|2 + |〈10 · · ·0|U(τ)|0 · · ·01〉|2

+
|C |∑
ℓ=1

|〈10 · · ·0|U(τ)|0φℓ0〉|2 , (82)

we finally arrive at

f2(τ) = |〈10 · · ·0|U(τ)|0 · · ·01〉|2 +
|C |∑
ℓ=1

(1− γ1pℓ)|〈10 · · ·0|U(τ)|0φℓ0〉|2 , (83)

which explicitly fulfils the constraint (51).

3.2.3 Numerical results

For large chains the problem can be approached numerically through the use of exact diagonal-
ization techniques. In the general case, the complexity of the problem increases exponentially
with the chain’s size; thus, only small ones can be treated. Nonetheless we devised an algo-
rithm that allows computing the energy exchanges at the limit cycle of the 2 stroke engine (23)
for Hamiltonian chains of the form (59) – i.e., for model (33) with Ki = Fi = 0). All the cases
analysed confirmed the behaviour reported in the ansatz (49). Examples of the result obtained
are reported in Fig. 2 for N = 8 spins. In Fig. 5 we report instead the value of the function
f2(τ) for the case of a spin-chain of N = 1000 elements evaluated via Eq. (83).
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f 2(τ
)

τ
Figure 5: Value of the function f2(τ) of Eq. (83) computed numerically for the Hamil-
tonian model (33) of length N = 1000. Plot realized assuming Ji = 1, Ki = Fi = 0,
constant over the sample, and taking Ei varying linearly from E1 = 1 to EN = 2.

3.2.4 Remarks

We remark that the single excitation, low T result of Eq. (83) holds for any temperature T .
This per se does not mean that high T effects are unimportant for calculating heat and work
exchanged during the engine operation. Those are indeed important, but are fully lumped in
the function g, rather than in the function f , see Eq. (49). The physical reason why the low T
sector of the spectrum suffices for the calculation of f , is that the chain is such that it allows
for at most one excitation at a time to be transferred, i.e., the transfer mechanism is mediated
by single excitations only.

We stress that while the size of the region of validity of the low T expansion may shrink
with growing system size (because that would be accompanied by a shrinking of the energy
gaps in the system spectrum) the low T result in Eq. (83) would remain valid regardless of
how small that region is (as long as it does not get exactly null).

4 Two-qubit chains with no symmetries

In this section we analyse the performance of a spin chain model which does not preserve lon-
gitudinal magnetization. Under this circumstances the analysis becomes much more involved
as the symmetry (39) does not apply. For the sake of simplicity we restrict to a class of N = 2
spin chain models described by Hamiltonians of the form

H = E1SZ
1 + E2SZ

2 + 4JR(S
X
1 SX

2 + SY
1 SY

2 ) + 4JI(S
X
1 SY

2 − SY
1 SX

2 )

+ 4KR(S
X
1 SX

2 − SY
1 SY

2 )− 4KI(S
X
1 SY

2 + SY
1 SX

2 ) + FSZ
1 SZ

2 ,
(84)
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for which the problem can be solved analytically. As previously shown for case detailed in
Sec. 3.2.1, by computing U(τ) one can determine the map (22) and find its fixed point ρ(∗)B .
Defining 




CJ (τ) := cos(ωJτ) + i sin(ωJτ)
E2−E1
2ωJ

,

SJ (τ) := − sin(ωJτ)
JR−iJI
2ωJ

,

ωJ :=
p
(E2−E1)2+|JR|2+|JI |2

2 ,

(85)

and 



CK(τ) = cos(ωKτ) + i sin(ωKτ)
E2+E1
2ωK

,

SK(τ) = − sin(ωKτ)
KR−iKI

2ωK
,

ωK =
p
(E2+E1)2+|KR|2+|KI |2

2 ,

(86)

we find

B〈1|ρ(⋆)B |1〉B =
S(τ2)
�

e
− β1E1

2
Z1(β1)

|CJ (τ1)|2+ e
β1E1

2
Z1(β1)

|SK (τ1)|2
�
+ e
− β2E2

2
Z2(β2)

|CJ (τ2)|2+ e
β2E2

2
Z2(β2)

|SK (τ2)|2
1−S(τ1)S(τ2)

, (87)

B〈0|ρ(⋆)B |0〉B =
S(τ2)
�

e
β1E1

2
Z1(β1)

|CJ (τ1)|2+ e
− β1E1

2
Z1(β1)

|SK (τ1)|2
�
+ e

β2E2
2

Z2(β2)
|CJ (τ2)|2+ e

− β2E2
2

Z2(β2)
|SK (τ2)|2

1−S(τ1)S(τ2)
, (88)

B〈1|ρ(⋆)B |0〉B = B〈0|ρ(⋆)B |1〉B = 0 , (89)

with S(τ) := |SJ (τ)|2 − |SK(τ)|2. Applying Eqs. (28)–(31) we arrive at





QC = fH(τ1,τ2)
e−
β1E1

2 −e
β1E1

2

Z1(β1)
+ fC(τ1,τ2)

e−
β2E2

2 −e
β2E2

2

Z2(β2)
,

QH = fH(τ2,τ1)
e−
β1E1

2 −e
β1E1

2

Z1(β1)
+ fC(τ2,τ1)

e−
β2E2

2 −e
β2E2

2

Z2(β2)
,

W = − ( fH(τ1,τ2) + fC(τ2,τ1))

�
e−
β1E1

2 −e
β1E1

2

Z1(β1)
+ e−

β2E2
2 −e

β2E2
2

Z2(β2)

�
,

∆ST = (β1 fC(τ2,τ1) + β1 fH(τ1,τ2))
e−
β1E1

2 −e
β1E1

2

Z1(β1)
+ (β1 fH(τ2,τ1) + β1 fC(τ1,τ2))

e−
β2E2

2 −e
β2E2

2

Z2(β2)
,

where

fH(τ1,τ2) :=
S(τ2)
�|CK(τ1)|2 − |SJ (τ1)|2

�2
1− S(τ1)S(τ2)

− |SK(τ1)|2 + |SJ (τ1)|2 , (90)

fC(τ1,τ2) :=

�|CK(τ1)|2 − |SJ (τ1)|2
� �|CK(τ2)|2 − |SJ (τ2)|2

�

1− S(τ1)S(τ2)
− 1 . (91)

The behaviour of the machine, in this case, is much different from what we saw before; pa-
rameters that previously did not play any role in determining the operation modes now are
determinant. For example, Fig. 6 shows how the free evolutions time τ1, τ2 (that previously
only entered in the positive multiplying factor f4 for the energy exchanges) can now modify the
operation mode of the system. Despite this, certain regularities can be observed by analyzing
the results numerically:

- For E1 and E2 having opposite signs, there are no restrictions: any thermodynamic be-
haviour is possible.

- For E1 > E2 and β2
β1
>

E1
E2

, the system cannot operate as a refrigerator [R]: every other
regime is possible.

- For β2
β1
<

E1
E2

, the system can operate as a refrigerator [R] or as a heater [H].
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(a) τ1 = 1, τ2 = 1.

EN /E1 EN /E1

EN /E1
EN /E1

QH
QC
W

QH
QC
W

QH
QC
W

QH
QC
W
ΔST
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(c) τ1 = 3, τ2 = 0.

Figure 6: Thermodynamic operation modes dependence on time for the two-qubit
model with Hamiltonian (84); here E1 = 1, |J |= 1.5, |K |= 0.3, β1 = 0.3, β2 = 0.6).
The color code adopted to represent the various modes is the same we used in Fig. 2:
i.e., Red [H], light blue [R], green [E], yellow [A]. τ1,τ2 are expressed in units of
ω−1

J . QH ,QC , W are expressed in units of E1.
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(b) E1 = 1, E2 = 0.25.
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(c) E1 = 1, E2 = 0.75.
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(d) E1 = 1, E2 = 1.5.

Figure 7: Operation modes in the τ1-τ2 plane of the 2 spin chain model of (84), for
various choices of E1 and E2 (|J | = 1.5, |K | = 0.3, β1 = 0.3, β2 = 0.6). As before
Red areas represent [H], light blue areas represent [R], green areas represent [E],
and yellow areas represent [A]. τ1,τ2 are expressed in units of ω−1

J .

- For E1 < E2 and β2
β1
>

E1
E2

, the system behaves as an accelerator [A] or as a heater [H].

or, expressed in more compact form




E2
E1
≤ 0 =⇒ [H], [R], [E], [A] ,

0≤ E2
E1
≤ β1
β2

=⇒ [R], [H] ,
β1
β2
≤ E2

E1
≤ 1 =⇒ [E], [A], [H] ,

E2
E1
≥ 1 =⇒ [A], [H] .

(92)

The same pattern was observed in Ref. [23] for a 2 spin-chain model in which the Hamiltonian
coupling was replaced by the action of unital gates. Figure 7, shows the pattern of alternating
operation modes in the τ1-τ2 plane for the different choices of E2

E1
.

5 Conclusion

Our study evidences how the use of quantum channel formalism can be a valuable tool for
analysing thermal engines. In particular, it shows that the presence of a global symmetry (i.e.,
the conservation of longitudinal magnetization), leads to a great simplification. In particular
we have presented an universal law that links the thermodynamic character of the limit cycle
to a finite number of parameters of the system. We also presented evidence that support a
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conjecture according to which for these models the fundamental thermodynamical quantities
can be explicitly computed by only looking at the low temperature response of the system.
Possible generalization of the present approach could be achieved by relaxing some of the
technical assumptions we have adopted in the analysis, such as permitting partial thermal
relaxation of the terminal elements of the network, considering more complex geometry of
the spin couplings, and allowing the presence of more than two baths. We emphasize that our
results are valid under the provision that the quantum channels that dictate the advancement
of the chain state by one cycle, are mixing. This rather than posing a limitation on the validity
of our results indeed establishes their universal character. Mixing channel are the rule rather
than the exception (they form a dense sub-set of the set of all quantum channels, while non-
mixing channels have zero measure), meaning that any arbitrary small random perturbation
would make a generic quantum channel a mixing one. In practice it means that incurring into
(or realising) a non-mixing channel is exceptionally hard. We remark that the mixing character
is not associated to issues such as integrability of the chain.
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A Existence and uniqueness of the limit cycle for spin-chain mod-
els with magnetization preserving Hamiltonians

For spin-chain models with interactions that conserve the total longitudinal magnetization,
the maps Φ̃AC and ΦBC introduced in Sec. 2.1 are mixing for almost all choices of the sys-
tem parameters – the only real constraint being that no exchange-interaction term is missing.
While this fact can be established as a direct consequence of Refs. [42,43,45], for the sake of
completeness we report here an explicit proof. We shall also verify that in these cases the as-
sociated fixed points states of the maps (i.e., ρ(⋆)CB and ρ̃(⋆)AC ) commute with their corresponding
longitudinal magnetization operators (i.e., SZ

CB and SZ
AC respectively).

The material is organized as follows: in Observation 1 we show that if one of the channels
ΦBC and Φ̃AC is mixing also the other must share the same property (this is true in general, not
just for the spin-chain models we consider here) next, in Observation 2 we prove Eq. (34),
i.e., that if the map ΦBC (resp. Φ̃AC) of the spin-chain model of Sec. 2.1 is mixing then its
fixed point state ρ(⋆)CB (ρ̃(⋆)AC ) must commute with the longitudinal magnetization operator SZ

CB
(SZ

AC); in Observation 3 we show that to prove that ΦBC is mixing it is sufficient to verify that
such property holds for the case in which T1 = T2 = 0; finally in Observation 4 we prove that
indeed at zero temperature, the channel ΦBC of the spin-chain model Sec. 2.1 is mixing under
rather general assumption on the system Hamiltonian.

Observation 1

To begin with let’s first observe that by construction, irrespectively from the specific model we
choose, the channel ΦBC is mixing if and only if Φ̃AC share the same property. Indeed given
ρ
(m)
ACB and ρ̃(m)ACB respectively the states of the chain at the beginning of stroke 1 and 3 of the
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m-th cycle, it holds

ρ̃
(m)
ACB = U1 ◦ T1(ρ

(m)
ACB) = U1(ρA(β1)⊗ρ(m)CB ) , (A.1)

ρ
(m+1)
ACB = U2 ◦ T2(ρ̃

(m)
ACB) = U2(ρ̃

(m)
AC ⊗ρB(β2)) , (A.2)

with T1,2 the local thermalization maps of stroke 1 and 3, and with U1,2 the unitary evolutions
of strokes 2 and 4. Accordingly invoking (20) and (21) we can write

Φm
CB(ρCB) = ρ

(m)
CB = TrA[T1(ρ

(m)
ACB)] = TrA[T1 ◦U2(ρ̃

(m−1)
AC ⊗ρB(β2))]

= TrA[T1 ◦U2(Φ̃
m−2
AC (ρ̃

(1)
AC )⊗ρB(β2))] , (A.3)

Φ̃m
AC(ρ̃AC) = ρ̃

(m)
AC = TrB[T2(ρ̃

(m)
ACB)] = TrA[T2 ◦U1(ρA(β1)⊗ρ(m)CB )]

= TrB[T2 ◦U1(ρA(β1)⊗Φm−1
CB (ρ

(1)
CB))] , (A.4)

which link the asymptotic behaviours of the two channels relating their fixed points as in
Eq. (26). Thanks to this observation our task can hence be reduced to the study of the mixing
property of ΦCB only.

Observation 2

Here we show that in the case of the spin-chain models of Sec. 2.1 that conserves the total
longitudinal magnetization, if ΦCB (Φ̃AC) is mixing, then its unique fixed point state ρ(⋆)CB (resp.

ρ̃
(⋆)
AC ) must commute with the longitudinal magnetization operator SZ

CB (resp. SZ
AC).

To show this fact given HD the Hilbert space associated with a portion D of the spin-
chain, consider its decomposition as a direct sum in terms of the eigenspaces HD,n of SZ

D, i.e.,

HD = ⊕|D|n=0HD,n where HD,n represents the subspace of the system formed by the vectors in
which we have exactly n particle that have spin up along the z-th direction and the remaining
|D| − n ones which are pointing spin down (|D| representing here the total number of spin in
D). Now introducing ΠD(n) the projector on HD,n, given a generic operator ΘD acting on HD,
let us decompose it as

ΘD = Θ
(bd)
D +Θ(off)

D ,




Θ
(bd)
D :=
∑|D|

n=0ΠD(n)ΘDΠD(n) ,

Θ
(off)
D :=
∑

n̸=n′ ΠD(n)ΘDΠD(n′) ,
(A.5)

whereΘ(bd)
D represents the block diagonal (bd) part of D which, for all n, sends HD,n into HD,n,

and with Θ(off)
D the trace-zero, (off-diagonal) contribution which instead induces transitions

among the various subspace HD,n. The following properties are easy to check:

i) an operator ΘD can commute with SZ
D if and only if it is bd (i.e., iff its off-diagonal part

Θ
(off)
D is null);

ii) any unitary evolution U which preserves the longitudinal magnetization of D will send
bd operators of D into bd operators.

Furthermore, since the subspaces HD,n of a composite system D = D1D2 of two distinct por-
tions of chain decompose as direct sums HD,n = ⊕n

n1=0HD1,n1
⊗HD2,n−n1

with HDj ,n j
being the

eigenspace of Dj with n j spins-up, we also have that

iii) the product states ρD1
⊗ ρD2

of local density matrices ρD1
, ρD2

which are locally bd, is
globally bd;
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iv) the reduced density matrices of ρD1
= TrD2

[ρD], ρD2
= TrD1

[ρD] of a state ρD which is
globally bd, are locally bd.

Notice that from iii) and iv) it follows that since that, for all temperatures, the Gibbs states
ρA(β1) and ρB(β2) are locally bd, we have that the thermal maps T1 and T2 which enter in the
definitions (18) and (21) are bd preserving transformations. Since due ii) the same property
holds for U1 and U2 due to, we can conclude that ΦCB and Φ̃AC also map bd states into bd
states. This means that the input states which are bd will maintain such property even after
repeated applications of ΦCB (Φ̃AC): considering that in case the is mixing such states will be
driven toward the unique fix point ρ(⋆)CB (resp. ρ̃(⋆)AC ) we can conclude that the latter must be bd
as well or, in view of property i), that this state commutes with the longitudinal magnetization
operator of the chain SZ

CB (resp. SZ
AC).

Observation 3

A further important simplification arises by noticing that from Eq. (18) it follows that such
channel can be decomposed as the convex sum of a collection of independent CPTP terms

ΦCB(· · · ) =
∑
i, j′

e−(β1ε
A
i +β2ε

B
j′ )

ZA(β1)ZB(β2)
Φ
(i, j′)
CB (· · · ) , (A.6)

where introducing T ( j
′)

2 := TrB[· · · ] ⊗ | j′〉B〈 j′| the LCPT transformation that replace the B
section of the chain with the j′-th energy eigenstate of HB, we have

Φ
(i, j′)
CB (· · · ) := TrA

�
U2 ◦ T ( j

′)
2 ◦U1

�|i〉A〈i| ⊗ · · ·
��
=
∑
i′, j

Sα,α′(· · · )S†
α,α′ , (A.7)

with α= (i, j) a joint index and

Sα,α′ := A〈 j|U(τ1)|i〉B〈i′|U(τ2)| j′〉A , (A.8)

the associated Kraus set. In particular, identifying with εA
0 and εB

0 with the ground states of

HA and HB, it follows that the term Φ(0,0)
CB of (A.7) represents the map one would obtain by

setting the system temperatures equal to zero, T1 = T2 = 0 (its weight being the largest
in the decomposition). Accordingly invoking the fact that mixing channels are stable under
randomization [43]we can claim that if Φ(0,0)

CB is mixing, also ΦCB (and thus Φ̃AC) will be mixing
for any other choice of the temperatures.

Observation 4

Here we prove that a part from very special cases where the system Hamiltonian H admits at
least an eigenvector of the factorized form

|E〉ACB = |0〉A⊗ |φ〉C ⊗ |0〉B , (A.9)

the zero-temperature channel Φ(0,0)
CB introduced in the previous section is indeed mixing. As

shown in Ref. [45] the condition (A.9) is indeed rare as it cannot occur as long as all the
nearest-neighbor interactions of the model contain exchange parts (i.e., if |Ji|+ |Ki| ≠ 0 for all
i).

By direct computation it is easy to verify that Φ(0,0)
CB admits as fixed point the state |0 · · ·0〉CB

in which all the spins are pointing down along the z-th direction. Therefore if Φ(0,0)
CB is mixing

we must have that

lim
m→∞(Φ

(0,0)
CB )

m(ρCB) = |0 · · ·0〉CB〈0 · · ·0| , (A.10)
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for all states ρCB. Notice that we can restrict the analysis to the cases in which ρCB are bd
states: indeed if (A.10) applies to all such configurations then, from Eq. (A.5) it will follows
that in the limit m→∞ a generic (not-necessarily bd) state will be driven into a final con-
figuration that has |0 · · ·0〉CB〈0 · · ·0| as the bd component, but since |0 · · ·0〉CB〈0 · · ·0| is pure,
this is indeed the only state that fulfil such property. Now given ρCB bd a state, using the fact
that ΦCB is a bd preserving channel (see Observation 2) it follows that its evolved counterpart
under m iterate actions of Φ(0,0)

CB can be expressed as

ρ
(m)
CB := (Φ(0,0)

CB )
m(ρCB) =

|CB|∑
n=0

ΠCB(n)ρ
(m)
CB ΠCB(n) =

|CB|∑
n=0

q(m)n ρ
(m)
CB (n) , (A.11)

with q(m)n := TrCB

�
ΠCB(n)ρ

(m)
CB

�
the probability that the system contains exactly n spins up in

CB and ρ(m)CB (n) := ΠCB(n)ρ
(m)
CB ΠCB(n)/q(m)n (notice that for m= 0 the above equation simply

represents the bd decomposition (A.5) of the input state). By construction the quantity

P(m)n (ρCB) :=
|CB|∑
n′=n

q(m)n′ =
|CB|∑
n′=n

TrCB

�
ΠCB(n

′)ρ(m)CB

�
, (A.12)

measures the fraction of ρCB which contains at least n spins up after m iterated applications
of the channel Φ(0,0)

CB : proving (A.10) accounts to show that, for all n ≥ 1, P(m)n converges to
zero as m goes to infinity for all ρCB. Observe that for each fixed m and ρCB, P(m)n (ρCB) is not
increasing w.r.t. n, i.e.

P(m)n+1(ρCB)≤ P(m)n (ρCB)≤ P(m)0 (ρCB) = 1 . (A.13)

Furthermore since the zero-temperture transformation Φ(0,0)
CB cannot increase the longitudinal

magnetization of the input states (indeed the unitary U1 and U2 preserve the magnetization,
while T1 and T2 replace part of their input states with terms that contains no spin-up compo-
nents), we have that for all m, ∆m non negative integers, one has

Tr[ΠCB(n
′)(Φ(0,0)

CB )
∆m(ρ(m)CB (n

′′))] = 0 , ∀n′ > n′′ , (A.14)

which in particular implies that for each given n≥ 1 and ρCB, P(m)n (ρCB) is also a non decreas-
ing function of m, i.e.,

P(m+1)
n (ρCB)≤ P(m)n (ρCB) . (A.15)

Following Ref. [45] given any positive integer ∆m and n ≤ |CB| − 1 we can then derive
the inequalities

P(m+∆m)
n (ρCB) =

∑
n′≥n

TrCB

�
ΠCB(n

′)(Φ(0,0)
CB )

∆m(ρ(m)CB )
�

=
∑
n′≥n

∑
n′′≥n

q(m)n′′ TrCB

�
ΠCB(n

′)(Φ(0,0)
CB )

∆m
�
ρ
(m)
CB (n

′′)
��

=
∑
n′≥n

∑
n′′≥n+1

q(m)n′′ TrCB

�
ΠCB(n

′)(Φ(0,0)
CB )

∆m
�
ρ
(m)
CB (n

′′)
��

+ q(m)n TrCB

�
ΠCB(n)(Φ

(0,0)
CB )

∆m
�
ρ
(m)
CB (n)
��

≤
∑
n′≥n

∑
n′′≥n+1

q(m)n′′ TrCB

�
ΠCB(n

′)ρ(m)CB (n
′′)
�

+ q(m)n TrCB

�
ΠCB(n)(Φ

(0,0)
CB )

∆m
�
ρ
(m)
CB (n)
��
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=
∑

n′≥n+1

∑
n′′≥n+1

q(m)n′′ TrCB

�
ΠCB(n

′)ρ(m)CB (n
′′)
�

+ q(m)n TrCB

�
ΠCB(n)(Φ

(0,0)
CB )

∆m
�
ρ
(m)
CB (n)
��

=
∑

n′≥n+1

TrCB

�
ΠCB(n

′)(Φ(0,0)
CB )

m(ρCB)
�

+ q(m)n TrCB

�
ΠCB(n)(Φ

(0,0)
CB )

∆m
�
ρ
(m)
CB (n)
��

≤ P(m)n+1(ρCB) +Q(m 7→m+∆m)
n , (A.16)

where

Q(m 7→m+∆m)
n := max

|ψn〉CB∈HCB,n

TrCB

�
ΠCB(n)Φ

∆m
CB (|ψn〉CB〈ψn|)

�
, (A.17)

is the maximum population of a generic state |ψn〉CB ∈HCB,n which after m iteration that also
remain in HCB,n after ∆ extra steps. For the special case in which n= |CB|, the same analysis
holds, obtaining

P(m+∆m)
|CB| (ρCB)≤ +Q(m 7→m+∆m)

|CB| . (A.18)

From here the analysis exactly mimics the one of Ref. [45]. We can in fact express Q(m 7→m+∆m)
n

as

Q(m 7→m+∆m)
n = max

|ψn〉CB∈HCB,n

||(P2P1)
∆m |0〉A⊗ |ψn〉CB ||2

= max
|ψn〉CB∈HCB,n

||(P2,nP1,n)
∆m |0〉A⊗ |ψn〉CB ||2 , (A.19)

where P1 := |0〉B〈0|U(τ1), P2 := |0〉A〈0|U(τ2), Pi,n := ΠACB(n)PiΠACB(n) their restrictions to
the subspaces HACB,n. Now from the spectral properties of the projector operators it follows
that un less the Hamiltonian H admits at least an eigenvector of the form (A.9) we get

lim
∆m→∞Q(m 7→m+∆m)

n = 0 , ∀n> 1 ,∀m . (A.20)

Replacing this into Eq. (A.18) and (A.16) respectively we finally get

lim
m→∞ P(m)|CB|(ρCB) = 0 , (A.21)

and

lim
m→∞ P(m)n (ρCB) = lim

m→∞ P(m)n+1(ρCB) = · · · lim
m→∞ P(m)|CB|(ρCB) = 0 . (A.22)
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