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Abstract

We propose a duality between the complex Liouville string and a two-matrix integral.
The complex Liouville string is defined by coupling two Liouville theories with complex
central charges c = 13± iλ on the worldsheet. The matrix integral is characterized by its
spectral curve which allows us to compute the perturbative string amplitudes recursively
via topological recursion. This duality constitutes a controllable instance of holographic
duality. The leverage on the theory is provided by the rich analytic structure of the
string amplitudes that we discussed in [1] and allows us to perform numerous tests on
the duality.
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1 Introduction

Low-dimensional string theories have proven to be invaluable theoretical laboratories for in-
vestigating fundamental aspects of string theory and of quantum gravity. They provide ex-
amples where holographic dualities may be derived and understood in complete detail from
the string worldsheet. The last couple of years have experienced rapid progress in the deriva-
tion and exploration of such holographic dualities, such as in string theory on AdS3 with pure
NS-NS flux [2–4], the c = 1 string [5, 6], topological strings [7], and the Virasoro minimal
string [8]. Each of these instances teaches us new lessons about holography and sharpens our
tools to understand richer instances of holography. In the present paper, we derive a new string
theory/matrix integral duality. It is much richer than previous string theory/matrix integral
dualities yet at the same time under good technical control. It thus represents a significant
step up in complexity towards our quest to understand more realistic versions of holography.

The complex Liouville string. In our previous paper [1], we introduced the complex Li-
ouville string. This is a non-critical string theory defined by coupling two complex-conjugate
copies of Liouville CFT together with the bc-ghosts on the worldsheet:

Liouville CFT
c+ = 13+ iλ

⊕
(Liouville CFT)∗

c− = 13− iλ
⊕

bc-ghosts
c = −26 ,

(1.1)

where λ ∈ R+. This defines a fully consistent model of two-dimensional quantum gravity
(both on the worldsheet and in target space). Moreover the integrals of worldsheet correla-
tion functions over the moduli space of Riemann surfaces that define the perturbative string
amplitudes A(b)g,n(p1, . . . , pn) converge absolutely. Here p j labels the Liouville momentum of
the external vertex operators. We may think of the string amplitudes as analytic functions of
the momenta.
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In our previous paper [1]we focused on the worldsheet description of the theory. The exact
solution of the worldsheet CFT (1.1) [9, 10] allowed us to deduce the rich analytic structure
of the string amplitudes A(b)g,n viewed as analytic functions of the external momenta p j . This
inspired the initiation of a bootstrap program, which harnesses the analytic structure together
with other constraints from the worldsheet description to pin down the string amplitudes with-
out explicitly computing the moduli space integrals. We presented the explicit solution of this
bootstrap program for low values of (g, n), focusing in particular on the sphere four-point
amplitude A(b)0,4 and the torus one-point amplitude A(b)1,1 as worked examples.

In this paper we will demonstrate that this model admits an equivalent description in terms
of a double-scaled two-matrix integral. This will allow us to compute the perturbative string
amplitudes algorithmically via the topological recursion of the matrix integral, and hence solve
the model at the level of string perturbation theory. We will explore the duality at a non-
perturbative level in a third paper in this series [11]. This paper is an expanded version of the
corresponding section of [12].

The (p,q) minimal string and two-matrix integrals. An important benchmark and point
of comparison that has been explored extensively in the literature is the (p, q) minimal string.
This model is defined by coupling the (p, q) Virasoro minimal model to Liouville CFT and the
bc-ghosts on the worldsheet, and we will see that it bears a number of similarities to the com-
plex Liouville string, although there are some essential technical and conceptual differences
between the two classes of models.

For p, q > 2, the (p, q) minimal string is conjecturally dual to a double-scaled two-matrix
integral [13–16] (for reviews, see [17–19]). Observables in the relevant class of two-matrix in-
tegrals are computed by integrating a pair of N×N Hermitian matrices weighted by potentials
for the two matrices together with a minimal coupling

〈·〉=
∫

R2N2
[dM1][dM2] (·)e−N tr(V1(M1)+V2(M2)−M1M2) . (1.2)

In the double-scaling limit, we take N →∞ and zoom in on a particular region of the spectral
curve that characterizes the eigenvalue distribution. In this limit observables in the matrix
integral admit a topological genus expansion, and this perturbative expansion is completely
fixed by the geometry of the spectral curve. This is facilitated by a recursion relation for the
perturbative expansion of the matrix integral resolvents known as topological recursion [20],
which is entirely determined by the spectral curve. This is analogous to how the leading
density of eigenvalues determines the perturbative expansion of double-scaled single matrix
integrals via topological recursion. Since the literature on the topological expansion of two-
matrix integrals [21, 22] is somewhat scattered and the derivation of topological recursion
substantially more complicated compared to that of single-matrix integrals, we take some time
to carefully review it in this paper.

The dual descriptions of the (p, q)minimal string and its deformations correspond to a par-
ticular universality class of matrix integrals involving matrix potentials that are finite-degree
polynomials subject to rational double-scalings. In particular, the spectral curve is algebraic
and defines a Riemann surface of genus 0 and (p−1)(q−1)

2 nodal singularities.1 In this paper
we will argue that the complex Liouville string is dual to a matrix integral characterized by a
spectral curve with infinitely many nodal singularities and branch points. We will see that, in
contrast to the (p, q)minimal string, this can be engineered via an irrational double-scaling of
a two-matrix integral involving matrix potentials of infinite degree.

1This can also be seen as a surface of genus (p−1)(q−1)
2 in a degeneration limit where all cycles are collapsed to

nodal singularities.
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A two-matrix integral for the complex Liouville string. The central claim of this paper is
that the complex Liouville string is dual to a double-scaled two-matrix integral characterized
by the following spectral curve

x(z) = −2cos(πb−1pz) , y(z) = 2cos(πb
p

z) . (1.3)

Here b labels the central charge of one of the worldsheet Liouville CFTs via the usual param-
eterization c = 1+ 6(b+ b−1)2. The range of central charges of interest in (1.1) corresponds
to b ∈ e

πi
4 R. In contrast to the spectral curve of the (p, q) minimal string this is not algebraic

and exhibits infinitely many nodal singularities (points z± that map to the same point on the
spectral curve) and infinitely many branch points z∗m where dx(z∗m) = 0. The infinitely many
branch points lead to an additional infinite sum in the topological recursion, which renders
the resolvents significantly more complicated than those of the matrix integral duals of for
example JT gravity [23] or the Virasoro minimal string [8].

Feynman diagrams for string amplitudes. We claim that moreover there is a simple dictio-
nary between the resolvents ω(b)g,n(z1, . . . , zn) which are the natural observables of the matrix

integral and the string amplitudes A(b)g,n(p1, . . . , pn) of the complex Liouville string. The relation
involves sums over the branch points of the spectral curve and is given in equation (3.22).

Theorems of [24, 25] regarding topological recursion for spectral curves with multiple
branch points allow us to express the resolvents in terms of intersection numbers on the mod-
uli space of Riemann surfaces, which we may then translate to intersection theory expressions
for the string amplitudes. The result takes the form of a sum over degenerations of the world-
sheet Riemann surface (“stable graphs”) given in equation (3.26). Remarkably, for each term
in the sum the intersection theory data reassembles into a product of the corresponding “quan-
tum volumes” V(b)g,n of the Virasoro minimal string, which were themselves shown to admit an
intersection number representation in [8]. We interpret this representation of the string ampli-
tudes as a sum over Feynman diagrams of the closed string field theory of the complex Liouville
string, with the VMS quantum volumes playing the role of the on-shell string vertices.

CohFT and TQFT. We also explain that this structure is the one known as a cohomological
field theory (CohFT) in the mathematical literature [26]. The complex Liouville string thus
provides an interesting CohFT of infinite rank. One can associate a 2d TQFT to any CohFT by
restricting to the degree 0 piece in cohomology. This TQFT turns out to be SU(2)q Yang-Mills
theory, which in turn relates the theory to the Schur index of 4d class S theories.

Topological recursion for string amplitudes. Given the simple relation between the two
observables, we then translate the topological recursion for the matrix integral resolvents into
a recursion relation for the perturbative string amplitudes themselves. The recursion relation,
given in equation (3.44), expresses the string amplitude in terms of a sum of integrals of
string amplitudes of lower complexity, corresponding to the different ways of excising a pair
of pants with a particular external leg from the worldsheet surface. This may be viewed as a
generalization of Mirzakhani’s recursion relation for the Weil-Petersson volumes of the moduli
space of Riemann surfaces [27]. Indeed the recursion relation is remarkably identical to the
recursion relation for the quantum volumes of the Virasoro minimal string presented in [8]
— even the recursion kernel that appears in the integrals is the same. The only difference is
that the three-point function of the excised pair of pants also appears — contrary to the case
of the corresponding quantum volume V(b)0,3 = 1, the sphere three-point amplitude A(b)0,3 is a
non-trivial function of the momenta that was studied in our previous paper [1].
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Tests of the duality. Both sides of the proposed duality between the string theory (1.1) and
the two-matrix integral characterized by the spectral curve (1.3) are sufficiently explicit that
it is possible to perform many tests directly which collectively are close to constituting a proof
of the duality. We list some of them here:

1. The string amplitude Feynman rules directly reproduce the low-lying string amplitudes
A(b)0,3, A(b)0,4, and A(b)1,1 that were bootstrapped from the worldsheet definition in our first
paper [1].

2. Both the Feynman rules and the topological recursion facilitate the analytic continua-
tion of the string amplitudes to general complex momenta. These representations of
the general string amplitudes A(b)g,n viewed as analytic functions of the momenta mani-
fest the analytic structure — including an infinite set of poles and an infinite series of
discontinuities — exactly as predicted from the worldsheet description [1].

3. Beyond reproducing the correct analytic structure, the matrix integral representations
of the string amplitudes also satisfy the dilaton equation and exhibit the symmetry prop-
erties predicted from the worldsheet description. Intriguingly, the b→ b−1 duality sym-
metry, which is a tautological symmetry of Liouville CFT in the worldsheet description,
is non-trivial in the matrix integral representation — it roughly amounts to a symmetry
that exchanges x(z) and y(z) in the spectral curve, which is known as the x-y symmetry
in topological recursion [20]. We will see that it nevertheless follows straightforwardly
from the topological recursion for the string amplitudes.

Collectively, we view these tests as even stronger evidence than has been amassed for the
conventional (p, q) minimal string/matrix integral dualities.

Non-perturbative effects. This paper treats the string theory/matrix integral duality per-
turbatively. The non-perturbative completion and instanton effects are interesting extensions
that will be treated in the third installment of this series of papers [11].

Sine dilaton gravity. The worldsheet theory can be viewed as a 2d theory of gravity. This
theory of gravity is dilaton gravity with a periodic sine potential for the dilaton. As such
perturbative string amplitudes can be seen as computing the gravitational path integral of this
theory. One particularly interesting aspect of this 2d theory of gravity is that it hosts both AdS
and dS vacua and thus the worldsheet theory can be viewed as a rigorous theory of 2d quantum
gravity involving de Sitter vacua. We develop this intuition further in [28] and show how the
structure of the perturbative string amplitudes discussed in this paper can be reproduced from
the gravitational path integral.

Integrated cosmological correlators and dS3 holography. There is yet another connec-
tion between the complex Liouville string and de Sitter quantum gravity. The worldsheet
Liouville CFT partition functions may be interpreted as defining the wavefunctions of special
states in the canonical quantization of pure three-dimensional Einstein gravity with positive
cosmological constant. In [29] we will argue that the string amplitudes A(b)g,n may moreover be
interpreted as cosmological correlators of massive particles in dS3 integrated over the metric at
future infinity, where the topology of future infinity is that of the worldsheet Riemann surface
Σg,n. This establishes a precise holographic correspondence in the spirit of dS/CFT [30–34]
between late-time integrated cosmological correlators in dS3 and the double-scaled two-matrix
integral that is the subject of the present paper.
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Outline of the paper. The rest of this paper is organized as follows. We begin by a somewhat
extensive review on two-matrix integrals in section 2. Two-matrix integrals were completely
solved in the mathematical literature in [21,22]. This happened after the surge of interest in
string theory/matrix integral dualities in the 90’s [13–16] and in our view the physics literature
has not fully caught up with these developments. We then discuss the specific double-scaled
two-matrix integral of interest in section 3 and explain the precise duality with the worldsheet
observables. We discuss the above mentioned checks of the duality in section 4 and end with
a number of open questions and future directions in 5. Some background and computations
are relegated to the appendices A, B and C.

2 The two-matrix integral

The following section provides a significant amount of background on two-matrix integrals. It
is not strictly necessary to understand the rest of the paper and readers just interested in the
duality of the complex Liouville string to a matrix integral may safely skip to section 3.

2.1 Why two-matrix integrals?

Our main conjecture is that the complex Liouville string is dual to a two-matrix integral of the
form

∫

R2N2
[dM1][dM2]e

−N tr(V1(M1)+V2(M2)−M1M2) , (2.1)

where the integral is over Hermitian matrices M1 and M2 of size N . Here V1(M1) and V2(M2)
are entire functions of M1 and M2. We also need to perform a double scaling limit on such
a two-matrix integral. Two-matrix integrals have appeared before as the dual description of
the (p, q)-minimal string [13–16,21,22,35]. While the specific two-matrix integral appearing
here will share many similarities with the minimal string two-matrix integral, it will differ in
some crucial ways. In this paper, we will treat the two-matrix integral (2.1) in an asymptotic
genus expansion, while non-perturbative effects will be discussed in [11].

Let us first give some intuition why a two-matrix integral appears as the dual description of
the bulk theory. One can loosely think of the two matrices as being associated to b and 1

b , and
we will see in particular that the b→ 1

b duality symmetry is associated to the exchange of the
two matrices. More technically, the two-matrix integral will live on the asymptotic boundaries
of 2d spacetime. To define these boundaries, we have to specify FZZT boundary conditions in
the worldsheet theory, which break the b→ 1

b symmetry. Observables will then be associated
with single-trace operators in one or the other matrix. A similar mechanism was described
in [36] for the (p, q) minimal string. Asymptotic boundaries will be discussed in more detail
both from the 2d spacetime and the worldsheet BCFT points of view in [11].

While this is a nice motivation that one should look at two-matrix models, we could in
principle also take suitable double scaling limits on say a three-matrix model or more generally
a chain of matrices [37]. However, one can already engineer the most general universality
classes of random matrices for two-matrix models and thus it suffices to look at that case.

Let us also notice that for the quadratic potential V2(M2) =
1
2 M2

2 , we can integrate out the
matrix M2 to reduce the integral to a single matrix integral. This happens in the (2, p)minimal
string which indeed can be described by a single matrix integral [38–40]. In the present case
the integral (2.1) cannot easily be reduced to a single matrix integral.
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2.2 Resolvents and all that

Let us recall some basic notions of two-matrix integrals. Most of them are straightforward
generalizations of the single matrix integral case.

Correlators. We will define correlation functions of operators

〈O1 · · ·On〉=
∫

R2N2
[dM1][dM2]

n
∏

i=1

Oi(M1, M2)e
−N tr(V1(M1)+V2(M2)−M1M2) . (2.2)

Assuming that Oi are single-trace operators, we can decompose such correlators into their
connected part by summing over all partitions of the set {1,2, . . . , n}, e.g.

〈O1〉= 〈O1〉c , (2.3a)

〈O1O2〉= 〈O1O2〉c + 〈O1〉c〈O2〉c , (2.3b)

〈O1O2O3〉= 〈O1O2O3〉c + 〈O1〉c〈O2O3〉c + 〈O2〉c〈O1O3〉c + 〈O3〉c〈O1O2〉c
+ 〈O1〉c〈O2〉c〈O3〉c , (2.3c)

etc. A connected correlator then has a 1
N -expansion2

〈O1 · · ·On〉c =
∞
∑

g=0

〈O1 · · ·On〉g N2−2g−n . (2.4)

This can be confirmed by the usual large-N ’t Hooft counting.

Reducing to eigenvalues. One can reduce the integral (2.1) to an integral over eigenvalues
by diagonalizing the two matrices as M j = U j DjU

−1
j with Dj diagonal and U j unitaries. The

integral over the relative unitary U1U−1
2 is non-trivial. If there are no operator insertions as

in (2.1), this is the Harish-Chandra-Itzykson-Zuber integral [41], which can be performed
explicitly with the result

∫

R2N2
[dM1][dM2]e

−N tr(V1(M1)+V2(M2)−M1M2)

∼
∫

R2N

N
∏

i=1

(dλi dµi)∆N (λ)∆N (µ)e
−N

∑

i(V1(λi)+V2(µi)−λiµi) , (2.5)

with λi and µi the eigenvalues of the two matrices. There is an overall N -dependent normal-
ization factor that we suppressed. Finally ∆N (λ) is the Vandermonde determinant

∆(λ) =
∏

1⩽i< j⩽N

(λi −λ j) . (2.6)

Notice that contrary to the single matrix integral there is only a single power of the Vander-
monde determinant for each matrix. (2.5) also holds in the presence of operators which are
invariant under separate conjugation of the two matrices,

O(U1M1U−1
1 , U2M2U−1

2 ) =O(M1, M2) , (2.7)

but becomes much more complicated for more general observables.

2This requires one to normalize the two-matrix integral by the Gaussian model.
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Resolvents. The main observables we will be interested in are resolvents in one matrix,
which we take to be the first,

R(x) = tr
1

x −M1
. (2.8)

When we have to distinguish quantities in the first matrix, we write R(1). We will also consider
products

R(x1, . . . , xn)≡
n
∏

i=1

R(x i) , (2.9)

for which following [42] we also employ the short-hand notation R(I) with I = {x1, . . . , xn}.
We then denote the terms in the genus expansion as

〈R(x1, . . . , xn)〉c =
∞
∑

g=0

Rg,n(x1, . . . , xn)N
2−2g−n . (2.10)

Cuts. For finite values of N , R(x) has poles whenever x coincides with one of the eigenvalues
of M1. Integrating over M1 will smear out these poles into branch cuts located at the support
of the eigenvalues of M1. Thus Rg,n(x1, . . . , xn) is a multi-valued function in all its arguments.
In particular, the discontinuity of 〈R(x)〉 gives the density of eigenvalues of the first matrix. To
leading order in 1

N ,

ρ0(x) = −
1

2πi
(R0,1(x + iϵ)− R0,1(x − iϵ)) , ρ0(x) =

∑

i

δ(x −λi) . (2.11)

Since we are discussing integrals over Hermitian matrices, the cuts must be located on the real
axis. Thus, x will naturally live on a multi-sheeted cover of the complex plane with potentially
several cuts on the real axis. This defines a Riemann surface Σ, called the spectral curve. We
will discuss it further below. We get one distinguished sheet where x initially took values,
which is the physical sheet.

In principle, we can have several cuts and assign some proportion of the eigenvalues to the
first cut, some proportion to the second cut, etc. These proportions are the filling fractions.
To get a well-defined 1

N expansion, one needs to prescribe the values of the filling fractions.
Given that the discontinuity of R0,1 gives the density of states (2.11), we can measure the
filling fraction by integrating R0,1 counterclockwise around the cut,

filling fraction=
1

2πi

∫

cut

dx R0,1(x) . (2.12)

Large N saddle-point equations. Let us further discuss the distribution of eigenvalues. At
large N , we have an effective potential for a pair of eigenvalues (λi ,µi):

Veff(λi ,µi) = V1(λi) + V2(µi)−λiµi −
1
N

∑

j, j ̸=i

log(λi −λ j)−
1
N

∑

j, j ̸=i

log(µi −µ j) . (2.13)

The saddle-point equations are hence obtained by putting the derivative to zero,

µi = V ′1(λi)−
1
N

∑

j, j ̸=i

1
λi −λ j

, (2.14a)

λi = V ′2(µi)−
1
N

∑

j, j ̸=i

1
µi −µ j

. (2.14b)
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We recognize the definition of the resolvent and obtain in the continuum limit

y = V ′1(x)− P

∫

ρ
(1)
0 (x

′)dx ′

x − x ′
, (2.15a)

x = V ′2(y)− P

∫

ρ
(2)
0 (y

′)dy ′

y − y ′
, (2.15b)

where P denotes the principal value of the integral. Here x and y lie on the eigenvalue support
of the two matrices, with ρ(1)0 (x) and ρ(2)0 (y) the corresponding leading densities of eigenval-
ues. We can also rewrite this as

2y = Y (x + iϵ) + Y (x − iϵ) , (2.16)

2x = X (y + iϵ) + X (y − iϵ) , (2.17)

with
Y (x) = V ′1(x)− R(1)0,1(x) , X (y) = V ′2(y)− R(2)0,1(y) . (2.18)

These equations are solved with the help of the loop equations.

2.3 Loop equations

It is possible to solve the matrix integral perturbatively in 1
N thanks to the loop equations. The

loop equations can be derived by using that total derivatives integrate to zero; or, alternatively
that the matix integral is invariant under change of variables of the matrices M1 and M2. The
loop equations take the form [21]




P(x , y)R(I)
�

=
­�

y − V ′1(x) +
1
N

R(x)
�

U(x , y)R(I)
·

+
1
N

n
∑

k=1

∂xk

­

U(x , y)− U(xk, y)
x − xk

R(I \ xk)
·

. (2.19)

Here,

U(x , y) = tr

�

1
x −M1

V ′2(y)− V ′2(M2)

y −M2

�

+ N(x − V ′2(y)) , (2.20a)

P(x , y) = N(V ′2(y)− x)(V ′1(x)− y)− tr

�

V ′1(x)− V ′1(M1)

x −M1

V ′2(y)− V ′2(M2)

y −M2

�

+ N . (2.20b)

(2.19) is called the master loop equation. For completeness, we included a derivation of (2.19)
in appendix A.1. It can be derived by requiring invariance of the matrix integral (2.1) under
reparametrization of the matrices M1 and M2.

Spectral curve. Let us consider the case with I = ; and take the large N limit of (2.19). This
gives with the help of the definition (2.18)

P0(x , y) = (y − Y (x))U0(x , y) . (2.21)

We denoted the genus 0 contribution to U and P by the subscript 0. Notice that the additional
terms proportional to N in (2.20a) and (2.20b) only contribute to the genus 0 piece. The
crucial observation is now that P0(x , y) is an entire function and thus no branch cuts appear
after integrating over the matrices. For polynomial potentials, P0(x , y) is in fact a polynomial.
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Indeed, P(x , y) does not have any poles in its definition (2.20b). Since the right-hand side
vanishes for y = Y (x), we find in particular that

P0(x , Y (x)) = 0 . (2.22)

Recall that Y (x) (2.18) defines a multi-sheeted cover of the x-plane. This equation precisely
describes Y (x). Notice in particular that for V2(M2) =

1
2 M2

2 , P0(x , y) is quadratic in y , which
means that the spectral curve is a two-fold cover of the complex plane.

We could have reversed the roles of the two matrices in the derivation. Since the definition
of P0(x , y) is symmetric in the two matrices, we also find that

P0(X (y), y) = 0 . (2.23)

Thus both of the points (x , Y (x)) and (X (y), y) lie on the spectral curve. However, this does
not mean that X and Y are inverse functions of each other since they are multivalued. We will
get back to this point below.

Explicit parametrization. (2.22) and (2.23) are implicit parametrizations of the spectral
curve. We can choose some direct parametrization by writing x(z) and y(z) where z ∈ Σ. We
then have by definition

P0(x(z),y(z)) = 0 . (2.24)

x(z) and y(z) are maps x : Σ→ CP1, y : Σ→ CP1. We use also the following notation below.
For z on the physical sheet, we write z0 = z and z i with i = 1, . . . , deg(V2)− 1 for the other
preimages of x−1(x(z)), i.e. x(z i) = x(z). x has a number of branch points dx(z∗m) = 0 labelled
by m. These will play an important role below. In particular, two branches meet at the branch
points, which given (2.11) implies that the support of the eigenvalues starts and ends on the
branch points.3

Genus and filling fractions. Let us consider the case where V ′1 and V ′2 are polynomials of
degree d1 and d2, respectively and write

V ′1(x) =
d1
∑

k=0

ak xk , V ′2(y) =
d2
∑

k=0

bk yk . (2.25)

Then P0(x , y) is a polynomial of degree d1 + 1 in x and d2 + 1 in y . Notice that in view of
the definition (2.20b), knowledge of P0(x , y) completely determines the potentials from the
coefficients of xd1 and yd2 . Also, the coefficients of xd1+1 y j ̸=0 and of x i ̸=0 yd2+1 vanish by
definition. The rest of P0 is new data, except for the coefficient of xd1−1 yd2−1, which follows
from the definition (2.20b). Thus P0 contains d1d2−1 undetermined coefficients. As we shall
now explain, they corresponds to the additional data of the filling fractions (2.12).

For generic choices of potentials and P0, the resulting spectral curve has genus d1d2 − 1.
However, for special choices of the potentials and P0, the curve can be singular and the topo-
logical genus can be lower. This was first observed in [43] and is an application of Baker’s
theorem [44]. It states that the geometric genus of a projective plane curve generically is the
number of integer lattice points in the interior of the Newton polygon of the irreducible poly-
nomial defining it. In the present case, the Newton polytope is the convex polytope spanned
by the vertices

{(0,0), (d1 + 1, 0), (d1, d2), (0, d2 + 1)} , (2.26)

3We assume that there are only simple branch points.
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which contains the lattice points (m, n) with 1⩽ m⩽ d1, 1⩽ n⩽ d2, except for (d1, d2). Thus
there are d1d2 − 1 interior lattice points and the result follows.

We can introduce a canonical homology basis of AI and BI cycles with
I = 1,2, . . . , g= d1d2 − 1 satisfying the standard intersection relations

AI ∩ AJ = 0 , BI ∩ BJ = 0 , AI ∩ BJ = δI J . (2.27)

We use a different font for the genus of the spectral curve to avoid confusions with the genus
appearing in the expansion (2.4). As described above, the filling fractions are obtained by
integrating R0,1(x) around a cut. Alternatively, we can integrate Y (x) around a cut since
V ′1(x) does not have a discontinuity. We can choose a basis of AI cycles that encircle the cuts
counterclockwise and compute the filling fractions via

ϵI = −
1

2πi

∫

AI

y(z)dx(z) . (2.28)

Thus, there are g = d1d2 − 1 many filling fractions and the data of specifying P0 precisely
corresponds to the data of the filling fractions.

Let us also note that the filling fractions are set at leading order in N and are not corrected
at subleading orders. This means that

∫

AI

Rg,n(x(z1), . . . ,x(zn))dx(z1) = 0 , (2.29)

except for (g, n) = (0, 1).

Rational parametrization and nodal singularities. In the case of interest, the spectral
curve will turn out to have genus 0 and all cycles are collapsed. This means that there are
d1d2 − 1 nodal singularities, i.e. d1d2 − 1 solutions to the equation

P0(x , y) = ∂x P0(x , y) = ∂y P0(x , y) = 0 . (2.30)

These conditions determine P0 already completely. This in particular implies that there exists
a rational parametrization of the spectral curve, i.e. z takes value in CP1. x(z) and y(z) are
then degree d2 + 1 and degree d1 + 1 maps from CP1 to itself. Notice that P0(x , y) has the
form

P0(x , y) = −ad1
xd1+1 − bd2

yd2+1 + ad1
bd2

xd1 yd2 +
∑

0⩽m⩽d1
0⩽n⩽d2

(m,n)̸=(d1,d2)

am,n xm yn , (2.31)

where the appearing exponents all lie inside the Newton polygon (2.26). Suppose x(z)
has a pole of order p1 at zpole and y(z) a pole of order p2 at zpole. Then the first three
terms in P0(x(z),y(z)) have poles of order (d1 + 1)p1, (d2 + 1)p2 and d1p1 + d2p2, while all
other terms have subleading poles. The leading pole order has to cancel, which implies that
(d1 + 1)p1 = d1p1 + d2p2 or (d2 + 1)p2 = d1p1 + d2p2. Using that p1 ⩽ d2 + 1 and p2 ⩽ d1 + 1
we find in the former case p1 = d2 and p2 = 1, while in the latter case p1 = 1 and p2 = d1.
Since the degree of the maps is d2 + 1 and d1 + 1 respectively, there are hence precisely two
poles, one of each kind. We can choose the coordinate z such that these two poles are at 0 and
∞. The most general such maps take the form

x(z) = γz +
d2
∑

k=0

αkz−k , y(z) =
γ

z
+

d1
∑

k=0

βkzk . (2.32)
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We used the remaining scaling symmetry in z to put the two coefficients γ equal.
There is one more condition on the coefficients. Consider the holomorphic differential

y(z)dx(z). We can use that z→∞ implies x(z)→∞. But the resolvent decays as 1
x for large

x , leading to

y(z)∼ V ′1(x(z))−
1

x(z)
, as z→∞ . (2.33)

This implies that

Res
z=∞

y(z)dx(z) = − Res
z=∞

dx(z)
x(z)

= − Res
x=∞

dx
x
= 1 . (2.34)

Writing out the left-hand-side explicitly leads to

γ2 −
min(d1,d2)
∑

k=1

kαkβk = −1 . (2.35)

At this point, the αk ’s and βk ’s determine both P0(x , y) and the potentials completely by in-
serting in (2.24).

Propagator. Consider next the special case I = {x ′} in the loop equations. We put x = x(z),
x ′ = x(z′) and y = y(z) and restrict to connected parts. Extracting the genus 0 part then leads
to

R0,2(x(z),x(z
′))U0(x(z),y(z)) +

�

∂ x(z′)
∂ z′

�−1
∂

∂ z′

�

U0(x(z),y(z))− U0(x(z′),y(z))
x(z)− x(z′)

�

= analytic in x(z) . (2.36)

We see from (2.36) that R0,2(x(z),x(z′)) has a double pole when x(z) = x(z′) but z ̸= z′. Let
us note that (2.21) implies that U0(x(z′),y(z)) = 0 when x(z) = x(z′) but z ̸= z′, since putting
x = x(z′) and y = y(z) leads to

0= P0(x(z),y(z)) = P0(x(z
′),y(z)) = (y(z)− y(z′))U0(x(z

′),y(z)) , (2.37)

where the LHS vanishes by construction (2.24). Since y(z) ̸= y(z′), it follows that
U0(x(z′),y(z)) = 0. Thus (2.36) implies that

R0,2(x(z),x(z
′))∼ −

1
(x(z)− x(z′))2

, (2.38)

when x(z)→ x(z′) but z ̸= z′. Let us also discuss what happens when x(z) approaches a branch
point. Then U0 can have square root singularities in x(z), just like the resolvent. This means
that we should look at the quantity

R0,2(x(z),x(z
′))dx(z)dx(z′) , (2.39)

which is a well-defined meromorphic differential on the spectral curve in both arguments. This
then also makes the singularity (2.38) coordinate independent. The combination

�

R0,2(x(z),x(z
′)) +

1
(x(z)− x(z′))2

�

dx(z)dx(z′) (2.40)

then only has a singularity at z = z′, which behaves like dz dz′

(z−z′)2 . Furthermore all its A-cycle
integrals vanish according to (2.29). This object is known as the Bergman kernel B(z, z′) on
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the spectral curve and is uniquely determined by these conditions. In the case where the curve
has genus 0, this kernel is simply

B(z, z′) =
dz dz′

(z − z′)2
. (2.41)

Thus we conclude

R0,2(x(z),x(z
′))dx(z)dx(z′) =

dz dz′

(z − z′)2
−

dx(z)dx(z′)
(x(z)− x(z′))2

. (2.42)

Uniqueness. The loop equations can be solved in principle by induction over 2g+ |I |. To see
this, rewrite (2.19) first in terms of connected quantities, which takes the form

〈P(x , y)R(I)〉c =
1
N
〈U(x , y)R(x , I)〉c

+
∑

J⊆I


�

y − V ′1(x) +
1
N R(x)

�

R(J)
�

c 〈U(x , y)R(J c)〉c

+
1
N

n
∑

k=1

∂xk

­

U(x , y)− U(xk, y)
x − xk

R(I \ xk)
·

c
. (2.43)

This equation can be proved from (2.19) by induction over |I |. If we expand (2.19) into
connected components, many terms can be removed thanks to (2.43) for sets |J | < |I | which
holds by induction. The remaining equation is (2.43).

We can then further expand the quantities in 1
N

〈P(x , y)R(I)〉c =
∞
∑

g=0

N1−2g−|I |Pg(x , y, I) , (2.44a)

〈U(x , y)R(I)〉c =
∞
∑

g=0

N1−2g−|I |Ug(x , y, I) , (2.44b)

〈R(I)〉c =
∞
∑

g=0

N2−2g−|I |Rg(I) . (2.44c)

Notice that by definition Pg(x , y, I) is a polynomial of order d2 − 1 in y (except for g = 0 and
I = ;, where it is of order d2 + 1 as discussed above). Inserting this into the connected loop
equations gives

Pg(x , y, I) = Ug−1(x , y, I ∪ x) +
g
∑

h=0

∑

J⊆I

�

Rh(x , J) +δh,0δJ ,;(y − V ′1(x))
�

Ug−h(x , y, J c)

+
n
∑

k=1

∂xk

Ug(x , y, I \ xk)− Ug(xk, y, I \ xk)

x − xk
. (2.45)

Let us now show that this is a recursion relation for Ug(x , y, I) and Rg(x , I). Suppose that we
know Uh(x , y, J) and Rh(x , J) for all 2h+ |J | < 2g + |I |. Let us write x = x(z) and y = y(z′).
(2.45) becomes then schematically

Pg(x(z),y(z
′), I) = known+(y(z′)−y(z))Ug(x(z),y(z

′), I)+Rg(x(z), I)U0(x(z),y(z
′)) , (2.46)

where ‘known’ stands for expressions that are known by recursion. We can then compute
Ug(x , y, |I |) and Rg(x , |I |) via the following steps:
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1. We first determine Rg(x(z), I). For this purpose, put z′ = z. Then

Rg(x(z), I)U0(x(z),y(z)) = Pg(x(z),y(z), I) + known. (2.47)

We have an explicit formula for U0(x(z),y(z)) in terms of the spectral curve, see
eq. (2.21). It in particular implies that U0(x(z),y(z)) → 0 for z → z∗m a branch point.
This means that Rg(x(z), I) will only have singularities at branch points. It also means
that Rg(x(z), I)dx(z) is a well-defined meromorphic differential on the spectral curve.
One can compute all the singular pieces of this differential from (2.47). The regular
piece is fixed by requiring that the A-cycle integrals vanish, (2.29). This is explained
more systematically in [45].

2. Once Rg(x(z), I) is known, we can solve (2.47) for Pg(x(z),y(z), I). Since Pg(x(z),y(z), I)
is a polynomial of degree d2 − 1 in y , this is actually more than enough to determine
it completely. Indeed we tautologically also know Pg(x(z),y(z i), I) = Pg(x(z i),y(z i), I)
since Pg is single-valued and x(z i) = x(z). This gives d2 + 1 values of y for which we
know Pg(x , y, I), which is enough to reconstruct the d2 coefficients of the polynomial in
y .

3. Finally, it is trivial to solve (2.46) for general x and y for Ug(x , y, I).

Let us note that we got slightly more than what we needed. We did not need to assume the
Pg(x , y, I) is a polynomial of degree d2−1, but only of degree d2 in y . This is important in the
derivation of the analyticity properties required for topological recursion, see appendix A.2.

2.4 Topological recursion

A remarkable property of two-matrix integrals is that the resolvents (2.10) can be recursively
determined from the knowledge of the spectral curve and one can bypass actually solving the
loop equations also for Ug(x , y, I) and Pg(x , y, I) in which we are ultimately not interested.
The resulting recursion relation is topological recursion. We now explain this recursion and
the detailed derivation can be found in appendix A.2 and A.3.

Definition of ωg ,n. We have already seen how R0,2 is completely determined from the spec-
tral curve, see (2.42). A crucial observation is that

ωg,n(z1, . . . , zn)≡ Rg,n(x(z1), . . . ,x(zn))dx(z1) · · ·dx(zn) , (2.48)

is a well-defined meromorphic multi-differential on the spectral curve Σ. We define ω0,1(z)
and ω0,2(z1, z2) slightly differently as follows

ω0,1(z) =
�

R0,1(x(z))− V ′1(x(z))
�

dx(z) = −y(z)dx(z) , (2.49a)

ω0,2(z, z′) =
�

R0,2(x(z),x(z
′)) +

1
(x(z)− x(z′))2

�

dx(z)dx(z′) . (2.49b)

The fact thatωg,n is a differential on the spectral curve follows recursively through the master
loop equation (2.19). We saw this explicitly for ω0,2. We explain this for completeness in
appendix A.2 following [22].
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The recursion kernel. A crucial ingredient in the topological recursion formula is the recur-
sion kernel. Let z∗m be an enumeration of the branch points of x(z), i.e.

dx(z∗m) = 0 . (2.50)

We assume that all branch points are simple. By definition, two branches of x(z) meet at
z = z∗m. This means that there is a second z i for some i on a different sheet that also tends to
z∗m. Let us write z i = σm(z). σm is called the local Galois involution at the branch point z∗m. It
is defined by the two properties

x(z) = x(σm(z)) , σm(z
∗
m) = z∗m , (2.51)

for z in a neighborhood of z∗m.
We then define the recursion kernel as

Km(z1, z)≡
1
2

∫ z
z′=σm(z)

ω0,2(z1, z′)

ω0,1(z)−ω0,1(σm(z))
=

1
z−z1
− 1
σm(z)−z1

y(z)− y(σm(z))
dz1

2dx(z)
, (2.52)

where we decoded the definition in the second expression explicitly for the genus 0 case.

Recursion relation. The statement of topological recursion is that the differentials ωg,n can
be recursively determined from ω0,1 and ω0,2 via the topological recursion formula

ωg,n(z1, . . . , zn) =
∑

m branch points

Res
z=z∗m

Km(z1, z)
�

ωg−1,n+1(z,σm(z), z2, . . . , zn)

+
g
∑

h=0

∑

I∪J={z2,...zn}
{h,I}̸={0,;}
{h,J }̸={g,;}

ωh,1+|I|(z,I)ωg−h,1+|J |(σm(z),J )
�

�

. (2.53)

Note that this is much simpler than the procedure outlined above for solving the loop equations
recursively.

Dilaton and string equation. The differentials ωg,n satisfy two simple relations. They are
consequences of the topological recursion (2.53) and take the form

∑

m

Res
zn+1=z∗m

F0,1(zn+1)ωg,n+1(z, zn+1) = (2− 2g − n)ωg,n(z) , (2.54a)

∑

m

Res
zn+1=z∗m

x(zn+1)
ky(zn+1)ωg,n+1(z, zn+1) = −

n
∑

j=1

dz j ∂z j

�

x(z j)kωg,n(z)

dx(z j)

�

. (2.54b)

Here, dF0,1 =ω0,1 and k = 0,1. We also wrote z = {z1, . . . , zn}. These equations are known as
the dilaton and string equation, respectively. In particular, we can use (2.54a) to define ωg,0
for g ⩾ 2. The definition of ω1,0 and ω0,0 is more subtle [20]. A proof of these two equations
can be found in [20, Corrolary 4.1, Theorem 4.7].4

x -y symmetry. Considerωg,0, which are the genus g free energies of the two-matrix integral.
The definition through the matrix integral treats x(z) and y(z) on completely equal footing,
which means that ωg,0 could be computed from the topological recursion as described above,
or alternatively through the topological recursion with the roles of x(z) and y(z) exchanged.
This property is highly non-obvious from the topological recursion (2.53). It was formally
proven in [46]. We will see below that for the case of interest, this symmetry extends to a
certain integral transform of ωg,n, which will be identified with the string amplitudes.

4Notice that [20, Corrolary 4.1] is stated incorrectly in the main text, but the proof is correct.
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2.5 Double scaling

The two-matrix integral of interest is a double-scaled two-matrix integral. This means that we
zoom in on a particular region of the spectral curve.

Rational double scalings. Suppose that we tune the coefficients in the potential and the
filling fractions such that there is a special point where the relation between x and y locally
reads

(x − x∗)
p = const.× (y − y∗)

q + . . . , (2.55)

for p and q coprime positive integers. This requires that (p−1)(q−1)
2 nodal points collide on the

spectral curve.5

We want to zoom into such a singular region of the spectral curve. Mathematically, we are
taking a blow up. Physically, we are taking a one-parameter family of potentials described by
t such that for t → tc, the potential exhibits such a singular behaviour. We then expand for
t ∼ tc and z ∼ z∗ in a coordinated way. To get something reasonable, we put z = z∗+(t− tc)νζ
for some critical exponent ν and a new coordinate ζ.6 This gives

x(z) = x∗ + (t − tc)
qνQ(ζ) + . . . , (2.57a)

y(z) = y∗ + (t − tc)
pνP(ζ) + . . . , (2.57b)

for two polynomials Q and P or degree q and p. One can easily verify the degree by noticing
that this double scaled spectral curve has the right number of double points. These polynomials
are in principle undetermined since they depend precisely on how we take the double scaling
limit. This is not surprising since we get a whole family of possible spectral curves that are
dual to the minimal string perturbed by the (p−1)(q−1)

2 operators of the theory. There will be a
special choice known as the conformal background where Q and P are Chebychev polynomials
of order q and p, respectively.

Notice thatω0,1(z) scales like (t− tc)(p+q)ν and hence by topological recursion,ωg,n scales
like (t − tc)−(p+q)ν(2g−2+n). The 1

N expansion of this theory takes the form

∞
∑

g=0

ωg,n(z1, . . . , zn)
�

N(t − tc)
(p+q)ν

�2−2g−n
. (2.58)

In order to get a good limit, we also need to send N →∞ in a coordinated way such that

eS0 ≡ N(t − tc)
(p+q)ν , (2.59)

remains finite. This explains the name double scaling.

5One can check this by parametrizing locally x(z) = x∗+ const. zq, y(z) = y∗+ const. zp. One then perturbs this
equation slightly so that x(z) and y(z) become generic polynomials of degree q and p respectively. Nodal points
correspond to pair of points with z1 ̸= z2 such that x(z1) = x(z2) and y(z1) = y(z2). Hence we are searching for
simultaneous solutions to the system of equations

x(z1)− x(z2)
z1 − z2

= 0 ,
y(z1)− y(z2)

z1 − z2
= 0 , (2.56)

which are polynomials of degree q − 1 and p − 1 respectively. By Bezout’s theorem, there will be generically
(p− 1)(q− 1) solutions. Since (z1, z2) and (z2, z1) are two different solutions that describe the nodal singularities
we find 1

2 (p− 1)(q− 1) when we slightly perturb away from the singularity.
6 t is usually taken to be the coefficient of the mixed term M1M2 in the exponent (2.1). In that case one can

show that ν= 1
p+q−1 .
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Irrational double scalings. The spectral curve that we will find is not of this type: it has
infinitely many nodal points. To engineer such a spectral curve via a double scaling limit, we
have to start with a more drastic singularity which requires the collision of infinitely many
nodal points in the unscaled spectral curve. This is of course only possible with potentials of
infinite degree since the number of nodal points is bounded by d1d2 where d1 and d2 are the
degrees of V ′1(x) and V ′2(y), respectively.

The discussion of topological recursion etc above however more or less straightforwardly
goes through provided that there are no convergence problems since one can approximate
the potential arbitrarily well by a polynomial of very high degree. In any case, we will be
interested in a local singularity of the form

(x − x∗)
b2
= const.× (y − y∗) + . . . , (2.60)

where b2 is purely imaginary. The reason for the notation b2 is to connect to the bulk string
theory. Clearly such a singularity requires infinitely many nodal singularities to collide and
hence x(z) and y(z) will have an essential singularity at z = z∗. We can locally engineer such
a singularity for example by setting

x(z) = x∗ + ez , y(z) = y∗ + ez b2
. (2.61)

We have x(z) = x∗ and y(z) = y∗ for z →∞, provided that we approach infinity from the
correct direction.

Since we want to zoom into the region z→∞, the way to introduce a new coordinate is
to set z = ζ+ν log(t− tc), so that for fixed ζ, z diverges as t → tc. Plugging this into x(z) and
y(z) leads to a spectral curve of the form

x(z) = x∗ + (t − tc)
νF(ζ) , y(z) = y∗ + (t − tc)

νb2
G(ζ) , (2.62)

where F and G are entire functions. F and G are not completely arbitrary: they are still both
of exponential type, i.e. grow at most like an exponential function near infinity. Moreover, we
know that

lim
ζ→∞

log G(ζ)
log F(ζ)

= b2 , (2.63)

at least in some directions in the complex plane. This is the analogue of the corresponding
functions being polynomials of degree q and p in the rational case (2.57). For practical pur-
poses, we notice that essentially all the formulas from the rational case will carry over. We
can first assume b2 ∈ R and approximate it arbitrarily well by rational numbers. We can then
often simply analytically continue to b2 ∈ iR. The rest of the double scaling limit is completely
analogous to the rational case.

2.6 Relation to 2d gravity

Two-matrix integrals compute 2d gravity amplitudes in the double scaling limit. The intuition
for this is well-known: two-matrix integrals count certain triangulations of 2d surfaces. Upon
taking the double scaling limit, the dominant contributions come from very fine triangulations
which define the 2d gravity path integral.7

Starting with Witten’s conjecture [48, 49], this relation has been made very precise. Ob-
servables in 2d theories of gravity can be realized as intersection numbers on the moduli space
of surfaces and hence the differentialsωg,n can be expressed in terms of such intersection num-
bers.

7This construction has actually been made rigorous in the mathematical literature in recent years in the form
of Brownian surfaces, see e.g. [47].
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Relation to intersection numbers. The general formula for a topological recursion with N
branch points labelled by {1, . . . , N} is [24,25]

ωg,n(z1, . . . , zn) = 23g−3+n
∑

Γ∈GN
g,n

1
|Aut(Γ )|

∫

MΓ

∏

v∈VΓ

e
∑

k⩾0 t̂mv ,kκk

×
∏

(•,◦)∈EΓ

∞
∑

r,s=0

Bm•,2r,m◦,2sψ
r
•ψ

s
◦

n
∏

i=1

∑

ℓ⩾0

ψℓi dηmi ,ℓ(zi) . (2.64)

The equation is a sum over stable graphs of colored Riemann surfaces, whose set we denote by
GN

g,n. The colors are indexed by natural numbers m ∈ {1, . . . , N}. A graph in GN
g,n has vertices

labelled by genera gv as well as a color mv ∈ Z⩾1. There are n labelled external legs. Let also
nv be the number of outgoing edges from every vertex v. Then stability of the graph means
that every vertex satisfies nv ⩾ 3 for gv = 0 and nv ⩾ 1 for gv = 1. We denote the set of
vertices by VΓ and the set of edges by EΓ . Such graphs describe degenerations of Riemann
surfaces into |VΓ | components connected at various nodal points that correspond to the edges
of the graph. Every component can have a different color, and the sum in (2.64) runs over all
possible combinations.

Furthermore, every such stable graph has some number of automorphisms. These are
not allowed to permute external lines (which are labelled by {1, . . . , n}), but can arbitrarily
permute internal lines. Just like in Feynman diagram computations, we have to divide by the
order of the automorphism group. For example, let us list all the stable graphs Γ ∈ GN

1,2:

Γ 1

1

2

01

1

2
0

12 00

1

2
00

12

|Aut(Γ )| 1 1 2 2 2

The number inside each component of the graph indicates the genus gv of the vertex. We
suppressed the color label mv .

The integral appearing on the right hand side of (2.64) is over MΓ =
∏

v Mgv ,nv
and

involves the standard kappa- and psi-classes on moduli space. Every internal edge is associated
to two punctures on the adjacent vertices. Thus every edge is associated to two psi-classes
which we denote byψ• andψ◦ and we may label the edge by the pair of psi-classes (•,◦) ∈ EΓ .
Finally, we also have psi-classes ψi of the external legs entering the formula. The quantities
t̂mv ,k, Bm,2r,m′,2s and the differentials dηm,ℓ(z) are determined through the data of the spectral
curve. We refer to appendix B for the precise formula. One can also refine the intersection
number data and define a so-called cohomological field theory (CohFT), which keeps track of
the full integrand in (2.64) and not only its intersection number. We will discuss this for the
case of interest briefly in section 3.6.

Continuum description. The intuition above should also mean that there is a continuum
description of such double scaling limits in terms of a string worldsheet theory. However, such
a relation is much harder to make precise rigorously and is not known in great generality. The
cases under control are

1. Rational models coming from a rational double scaling limit as described in section 2.5.
These are dual to the (p, q)-minimal string consisting of Liouville theory coupled to a
(p, q)-Virasoro minimal model. To describe general spectral curves, it is necessary to
deform this theory by the marginal operators of the theory. The case of q = 2 can also
be described in terms of a single matrix integral.
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2. Irrational single-matrix integrals. The Virasoro minimal string [8] is dual to such a spec-
tral curve with x(z) = −z2, y(z) = z−1 sin(bz) sin(b−1z) and b ∈ R. Under some restric-
tions, one can presumably also deform by marginal operators to obtain different spectral
curves as was done in the language of dilaton gravity in [50,51].

Removing the nodal singularities conjecturally requires putting the bulk theory in a back-
ground of a non-perturbatively large number of ZZ-instantons [36, 52], but this is not under
computational control from the bulk. We will further comment on this in the discussion 5.

3 The duality with the worldsheet theory

3.1 The spectral curve

As already mentioned in the introduction, our main claim is that the 2d gravity theory is dual
to a double-scaled two-matrix integral with spectral curve

x(z) = −2 cos(πb−1pz) , y(z) = 2cos(πb
p

z) . (3.1)

This is a curve of genus 0 and z provides the rational parametrization.8 z plays the role of ζ in
section 2.5, but we write z for notational simplicity. It satisfies the condition (2.63) and hence
can be realized as a double scaling limit around an essential singularity in the spectral curve.

Sheets. The spectral curve has infinitely many sheets since x(z) = x((
p

z + 2bn)2) for all
n ∈ Z. There are also infinitely many branch points

z∗m = (mb)2 , (3.2)

with m ∈ Z⩾1. As we shall see, the sum appearing on the RHS of (2.53) is always very rapidly
converging and the infinite number of branch points does not create convergence problems.

The perturbative expansion is fully controlled by topological recursion, which we reviewed
in section 2.4. The spectral curve leads us to the differential

ω
(b)
0,1(z) = −y(z)dx(z) = −

2π sin(πb−1pz) cos(πb
p

z)dz
b
p

z
. (3.3)

ω
(b)
0,2(z1, z2) takes the form

ω
(b)
0,2(z1, z2) = B(z1, z2) =

dz1 dz2

(z1 − z2)2
. (3.4)

As explained above, B(z1, z2) is the Bergman kernel on the spectral curve and its form is dic-
tated by the two-matrix integral, see section 2.3.

Singular points. The spectral curve has a number of singular points of the form (2.30). They
are located at

z±(r,s) = (r b± sb−1)2 , (3.5)

with r, s ∈ Z⩾1. Both choices of sign map to the same point under (x(z),y(z)), i.e.

x(z+(r,s)) = x(z−(r,s)) , y(z+(r,s)) = y(z−(r,s)) . (3.6)

This means that the spectral curve self-intersects at these points which is the definition of a
nodal singularity. One can hence picture the spectral curve as in figure 2. In particular, the
yellow region is the physical sheet and the eigenvalues are supported on x(z) ∈ [2,∞).

8It is computationally often more useful to use a parametrization of the spectral curve in terms of the parameter
w=
p

z, but conceptually the use of z is much cleaner. For various computations below we will use w.
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Out[ ] =

10 20 30
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0
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Figure 1: Density of states for the first matrix for b2 = i. Close to E ≈ 2 the density
behaves as ρ0(E)≈

p
E − 2.

Density of states. From the definition of ω(b)0,1 (2.49a) we infer

R0,1(x(z))dx(z) =
�

V ′1(x(z))− y(z)
�

dx(z) . (3.7)

It is natural to interpret the first matrix as a Hamiltonian; in this sense, we define the energy
E ≡ x(z). The eigenvalue density of the Hamiltonian can be computed from (2.11). The region
slightly above and below the branch cut is mapped to

z+ = −
b2

π2

�

arccosh
�

E
2

�

−πi
�2

, z− = −
b2

π2

�

arccosh
�

E
2

�

+πi
�2

, (3.8)

respectively. Hence the density of states becomes

ρ0(E) =
1

2πi

�

y(z+)− y(z−)
�

=
2
π

sinh
�

−πi b2
�

sin
�

−i b2arccosh
�

E
2

��

. (3.9)

When written in this way, the density of states is manifestly positive in a vicinity of E ∼ 2.
Because of the sine, the density of states however becomes negative far away from E = 2. The
sign changes occur precisely at the location of the singular points (3.5). This makes it possible
to rescue the definition of the theory and make it non-perturbatively well-defined. This has
no influence on perturbative quantities and we will postpone the discussion to [11].

One can similarly also compute the structure of the eigenvalues of the second matrix, also
interpreted as a Hamiltonian. They are supported on the interval (−∞,−2] with density of
states

ρ
(2)
0 (E

(2)) =
2
π

sinh
�

πi b−2
�

sin

�

i b−2arccosh

�

−
E(2)

2

��

, (3.10)

which is also positive for E(2) close to the edge −2.

Topological recursion. In this discussion it turns out to be most convenient to parameterize
the spectral curve in terms of the w coordinates so that

x(w) = −2 cos(πb−1w) , y(w) = 2 cos(πbw) , (3.11)
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z+(1,1)z−(1,1)

z+(1,2)z−(1,2)

z+(1,3)z−(1,3)

z+(2,1)z−(2,1)

z+(2,2)z−(2,2)

z+(3,1)z−(3,1)

Figure 2: The structure of the spectral curve plotted for b = 11
10 e

πi
4 . The points z±(m,n)

are nodal singularities and correspond to the same point on the spectral curve. We
denoted this by a dotted line, which can be viewed as a pinched handle of the surface.
The red dots correspond to the branch points z∗m of x(z). The differently colored
regions correspond to the different sheets of x(z). The yellow and red regions map
to C \ [2,∞) under x(z), while the green and blue regions map to C \ (−∞,−2].
The yellow region corresponds to the physical sheet. The support of the eigenvalues
is the lowest blue parabola which delineates the boundary of the physical sheet. It
maps to [2,∞) under x(z).

and

ω
(b)
0,1(w) = −

4π cos(πbw) sin(πb−1w)
b

dw , (3.12a)

ω
(b)
0,2(w1, w2) =

�

1
(w1 −w2)2

−
1

(w1 +w2)2

�

dw1 dw2 . (3.12b)

In this parametrization the branch points of the spectral curve correspond to w = ±mb for
m ∈ Z⩾1, with the local Galois inversion given by σm(w) = 2mb − w. The higher resolvent
differentials are then determined by the topological recursion (2.53) with the recursion kernel
given by (2.52):

Km(w1, w) = −
bw1

�

1
w2

1−w2 −
1

w2
1−σm(w)2

�

4π [sin(πb−1σm(w)) cos(πbσm(w)) + sin(πb−1w) cos(πbw)]
dw1

dw
. (3.13)

The plus sign in the denominator arises because dσm(w) = −dw.
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As an example, we can then straightforwardly apply the topological recursion to obtain
e.g. ω(b)0,3(w1, w2, w3)

ω
(b)
0,3(w1, w2, w3)

=
∞
∑

m=1

Res
w=w∗m

Km(w1, w)
�

ω0,2(w, w2)ω0,2(σm(w), w3) + (w2↔ w3)
�

= −
∞
∑

m=1

16m3 b4(−1)m w1w2w3 dw1 dw2 dw3

π3 sin(πmb2)(w2
1 − (w∗m)2)2(w

2
2 − (w∗m)2)2(w

2
3 − (w∗m)2)2

, (3.14)

where the overall minus sign again comes from dσm(w) = −dw. Similarly, ω(b)1,1(w1) is given
by

ω
(b)
1,1(w1) = −

∞
∑

m=1

(−1)mw1 dw1

48π3m sin(πmb2)(w2
1 − (w∗m)2)4

�

24b4m4 + 12b2m2(w2
1 − (w

∗
m)

2) (3.15)

+ (−6+m2π2(1+ b4))(w2
1 − (w

∗
m)

2)2
�

.

Comparison with the (p, q)minimal string. Let us compare this spectral curve to the spec-
tral curve of the (p, q) minimal string [35], which can be also parametrized analogously,

x(w) = −2 cos(πb−1w) , y(w) = 2 cos(πbw) , (3.16)

but with b2 = p
q ∈Q. The coordinate w is not a rational parametrization because

x(±w+ 2n
p

pq) = x(w) , y(±w+ 2n
p

pq) = y(w) , (3.17)

with n ∈ Z. To pass to a rational parametrization, we set w = 1
π

p
pq arccos(z) for a new

coordinate z. The multi-valued structure of arccos precisely absorbs the ambiguity (3.17).
Thus in these coordinates, the spectral curve reads

x(z) = −2cos(q arccos(z)) = −2Tq(z) , y(z) = 2 cos(p arccos(z)) = 2Tp(z) , (3.18)

with Tm(z) the Chebyshev polynomials. This corresponds to the conformal background dis-
cussed in section 2.5.

Because of the additional invariance in (3.17), there are only finitely many branch points
located at

z∗m = cos
�

πm
q

�

, (3.19)

with m= 1, . . . , q−1, compare with (3.2). There are also only finitely many nodal singularities
located at

z±(r,s) = cos
�

π(rp± sq)
pq

�

, (3.20)

with r = 1, . . . , q− 1 and s = 1, . . . , p− 1. Notice also that z±(r,s) = z±(q−r,p−s) and thus there are

exactly 1
2(p−1)(q−1) nodal singularities matching the general discussion of footnote 5. They

map to the Kac table of the Virasoro minimal model on the worldsheet.
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3.2 Relation between observables

We claim that the dictionary to the bulk diagrams A(b)g,n is given by

A(b)g,n(p1, . . . , pn) =

∫

γ

n
∏

j=1

e2πip j w j

4πip j
ω(b)g,n(w1, . . . , wn) (3.21)

=
∞
∑

m1,...,mn=1

Res
z1=z∗m1

· · · Res
zn=z∗mn

n
∏

j=1

cos(2πp j
p

z j)

p j
ω(b)g,n(z1, . . . , zn) . (3.22)

The first expression is in terms of the coordinate w j =
p

z j , in which ω(b)g,n has poles at
w j = ±mb for m ∈ Z⩾1. The contour γ runs to the right of the series of singularities ±mb
for each w j . The first equation (3.21) is valid provided that Re(bp j) > 0. It can be viewed as
an inverse Laplace transformation of the ω(b)g,n’s. We can then pull the contour over the singu-

larities which picks up the residue at the poles ±mb. For ω(b)g,n, the two residues are identical
and thus the residue becomes

Res
w j=mb

1
2
(e2πip j w j +e−2πip j w j )ω(b)g,n(w1, . . . , wn) = Res

w j=mb
cos(2πp jw j)ω

(b)
g,n(w1, . . . , wn) , (3.23)

which becomes (3.22) when written in terms of the variables z j . The second equation (3.22)
can be taken to be the defining relation for all values of p j .

The inverse transform that expresses the resolvents in terms of the string amplitudes is
given by

ω(b)g,n(w1, . . . , wn) = (−2π)n
∫ n
∏

j=1

�

−2p jdp j sin(2πp jw j)
�

A(b)g,n(p1, . . . , pn)
n
∏

j=1

dw j . (3.24)

The integrals over the Liouville momenta p j are to be computed in the following sense. By
expanding the sines, we are integrating polynomials times exponentials of the form

∫

dp e2πi(w±mb)pp2a+1 , (3.25)

for an integer m. The integral is then taken to run from 0 to infinity in a direction of the
complex plane such that the integral converges.

3.3 Reducing to sums over stable graphs

As reviewed in section 2.6, the differentialsω(b)g,n can be expressed as integrals over the moduli

space of surfaces, see eq. (2.64). When translating the relation to A(b)g,n, this relation takes the
form

A(b)g,n(p1, . . . , pn) =
∑

Γ∈G∞g,n

1
|Aut(Γ )|

∫ ′
∏

e∈EΓ

(−2pe dpe)
∏

v∈VΓ

�

b(−1)mv

p
2 sin(πmv b2)

�2gv−2+nv

×
∏

j∈Iv

p
2 sin(2πmv bp j)V

(b)
gv ,nv
(ipv) . (3.26)

Details on the derivation of this formula can be found in appendix B.9 Here Iv is the set of
momenta associated with the vertex v. There are two new ingredients in this formula. The
quantity V(b)g,n(ip) ≡ V(b)g,n(ip1, . . . , ipn) is the quantum volume defined in [8].10 It is a polyno-

9Strictly speaking all the results in [24, 25] were derived for a finite number of branch points, but from the
presence of the inverse sin(πmb2) factors, it is clear that all sums converge exponentially fast and thus convergence
is not a problem.

10Note that we multiplying the arguments by an extra i since we are parametrizing the Liouville momenta by
p j = −iPj .
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Table 1: The stable graphs contributing to A(b)g,n according to eq. (3.26) for the first
few cases.

0

1

2

3

∞
∑

m=1

2b(−1)m

sin(πmb2)

3
∏

i=1

sin(2πmbpi)

1 1
∞
∑

m=1

b(−1)m sin(2πmbp1)
24 sin(πmb2)

�

b2 + b−2

4
− p2

1

�

0 1 −
∞
∑

m=1

b(−1)m sin(2πmbp1)
16π2 b2m2 sin(πmb2)

0
12

3 4

∞
∑

m=1

�
p

2b(−1)m

sin(πmb2)

�2� b2 + b−2

4
−

4
∑

j=1

p2
j

� 4
∏

i=1

sin(2πmbpi)

00
12

3 4
+2 perms

∞
∑

m1,m2=1

2
∏

j=1

(−1)m j

π sin(πm j b2)

∏

i=1,4

sin(2πm1 bpi)
∏

i=2,3

sin(2πm2 bpi)

×
� δm1 ̸=m2

(m1 −m2)2
−

1
(m1 +m2)2

�

+ 2 perms

mial in Q[ b2+b−2

4 , p2
1, . . . , p2

n] of order 3g − 3+ n and can be defined as a certain intersection
number of moduli space or alternatively from a recursion relation analogous to Mirzakhani’s
recursion relation of the Weil-Petersson volumes [27]. The primed integral

∫ ′
means the fol-

lowing. By expanding the sines as in the discussion around (3.24) we encounter integrals of
the form

∫

dp e2πimbpp2a+1 . (3.27)

Here m is either the sum or difference of neighboring colors. For m ̸= 0 we take the integral to
run from 0 to infinity in a direction such that the integral converges. However, it can happen
that m = 0 if the colors of the two components we are connecting agrees. In this case, the
integral clearly does not converge and we simply discard it, i.e.

∫ ′

dp e2πimbpp2a+1 =

¨

Γ (2a+ 2)(−2πi bm)−2a−2 , m ̸= 0 ,

0 , m= 0 .
(3.28)

The logic is that in this case, the integral is instead accounted for in the formula by the stable
graph where the two components are merged.

Let us evaluate (3.26) for some simple examples. We group different terms according
to the topology of the corresponding stable graphs. This leads to Table 1. Summing these
contributions recovers in particular the equations we used in our previous paper [1].

String amplitudes from “Feynman rules.” In order to demystify the discussion of stable
graphs presented in the last subsection, here we illustrate the structure of the string amplitudes
(3.26) by explicitly representing the stable graphs as specific degenerations of the worldsheet
surface. We interpret (3.26) as a sum over Feynman diagrams for the closed string field the-
ory in a particular gauge, with specific Feynman rules associated to each degeneration of the
worldsheet surface. In these rules, each component of the degenerated surface receives a fac-
tor proportional to the Virasoro minimal string quantum volume V(b)g,n, which we interpet as
an on-shell string vertex. We work through the three examples listed in table 1 in turn.
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The string amplitude of the three-punctured sphere A(b)0,3, corresponding to the stable graph
in the first line of table 1 is represented by the single non-degenerate pair of pants in (3.29).
Using that V(b)0,3(ip1, ip2, ip3) = 1 we have

A(b)0,3(p1, p2, p3) =
∑

m1⩾1

p
2 sin(2πm1 bp1)

p
2 sin(2πm1 bp2)

p
2 sin(2πm1 bp3) .m1

b(−1)m1
p

2 sin(πm1 b2)

(3.29)

Next up we have the once-punctured torus which is the sum over two stable graphs in
(3.26):

A(b)1,1(p1) =
∑

m1⩾1

p
2sin(2πm1 bp1)

m1

b(−1)m1
p

2 sin(πm1 b2)
V(b)1,1(ip1)

p
2sin(2πm1 bp1)

+

b(−1)m1
p

2 sin(πm1 b2)

∫ ′

(−2q dq) sin(2πm1 bq)2

m1 . (3.30)

The first graph in (3.30) corresponds to a non-degenerate once-punctured torus, while the sec-
ond surface is a pair of pants glued together at two nodal points where the surface degenerates,
an example of a non-separating degeneration.

Finally the last two stable graphs in table 1 are the building blocks of A(b)0,4 in (3.26). We
obtain a four-punctured sphere, as well as a surface with a nodal point that connects two
three-punctured spheres. The two components are labelled by different color indices m1 and
m2. Graphically these two cases are shown below:

A(b)0,4(p1, p2, p3, p4) =

m1

∑

m1⩾1

p
2sin(2πm1 bp1)

p
2sin(2πm1 bp4)

p
2sin(2πm1 bp2)

p
2sin(2πm1 bp3)

�

b(−1)m1
p

2sin(πm1 b2)

�2
V(b)0,4(ip1, ip2, ip3, ip4)

+
∑

m1,m2⩾1

+ 2 perm.m1 m2

b(−1)m1
p

2 sin(πm1 b2)
b(−1)m2

p
2sin(πm2 b2)

p
2sin(2πm1 bp1)

p
2sin(2πm1 bp2)

p
2sin(2πm2 bp4)

p
2sin(2πm2 bp3)

∫ ′

(−2qdq) sin(2πm1 bq) sin(2πm2 b−1q)

(3.31)
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The general string amplitude A(b)g,n in (3.26) may similarly be obtained by repeated application
of these Feynman rules. However note that the number of stable graphs (Feynman diagrams)
grows very quickly with the genus of the surface and the number of boundary insertions.

3.4 A semiclassical limit of the string amplitudes

In the Virasoro minimal string, the string amplitudes reduce precisely to the Weil-Petersson
volumes in the limit in which the worldsheet central charge is taken to infinity, in accordance
with the fact that the worldsheet theory reduces to JT gravity in this semiclassical limit [8].
One might wonder whether the string amplitudes of the complex Liouville string exhibit a
similar simplification in an analogous semiclassical limit in which the imaginary part of the
worldsheet central charge is taken to infinity; after all, in this limit the sine dilaton gravity
theory that describes the worldsheet theory reduces to de Sitter JT gravity [28]. Here we
will see that a similar simplification occurs at the level of the semiclassical limit of the string
amplitudes.

We will take the Im c→∞ limit as (recall that −i b2 ∈ R+)

−i b2→∞ . (3.32)

In this limit, we scale the Liouville momenta with b so that

p ∼ −
iℓb
4π

. (3.33)

Here ℓ is held fixed. In the complex Liouville string it is natural for the Liouville momenta
p to have either the opposite or same e

πi
4 phase as b (the two situations are related by the

duality symmetry), corresponding to either real or purely imaginary ℓ, respectively. In the
semiclassical limit ℓ will be identified with a geodesic length.

The behavior of the string amplitudes in the semiclassical limit is most transparent in the
representation (3.26) involving the sum over stable graphs corresponding to degenerations
of the worldsheet surface. Associated with each vertex of the stable graph is a factor of the
quantum volume V(b)gv ,nv

. In this semiclassical limit, the quantum volumes simply reduce to the
corresponding Weil-Petersson volumes Vgv ,nv

[8]

V(b)g,n(ip)∼
�

b2

8π2

�3g−3+n

Vg,n(ℓ) . (3.34)

The corrections are suppressed in powers of 1/b2. In the sum over stable graphs, we see that
the leading contribution comes from the mv = 1 terms in the sums over colors; the contri-
butions of higher colors are exponentially suppressed at large b2. Each stable graph with all
colors set to one hence has the same exponential scaling at large b2. However, each integra-
tion over internal momenta is further suppressed by a factor of 1/b4, one factor of b−2 from
integration over an internal edge (3.28) and another from the sub-volumes (3.34) comprising
the degenerated surface. Therefore, we conclude that the leading contribution comes solely
from the trivial stable graph; the contributions from degenerated surfaces are all subleading
in the semiclassical limit. We thus find

A(b)g,n(p)∼
�

i b4

16π3
eπi b2

�2g−2+n n
∏

j=1

�

4π
b

sin(− iℓ j b
2

2 )
�

Vg,n(ℓ) . (3.35)

Hence the semiclassical limit of the string amplitudes reduces to the corresponding Weil-
Petersson volume, up to a renormalization of the vertex operators and of the string coupling
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constant. Notably, the renormalization of the string coupling constant that appears above is
purely imaginary, leading to oscillations in the sum over genera — indeed, we will see in [11]
that the effective string coupling deduced from the large-genus asymptotics of the string am-
plitudes is imaginary. We take this as an indication that the semiclassical limit of the complex
Liouville string corresponds to de Sitter JT gravity [53–55].11

It is interesting to compare this to the semiclassical limit of the spectral curve itself. The
semiclassical limit of the string amplitudes led to a projection to the m = 1 term in the sum
over colors (3.26), so we expand the spectral curve (3.11) around the m = 1 branch point by
writing12

w∼ b+
2u
b

. (3.36)

This expansion of the spectral curve yields

x(u)∼ 2−
4π2

b4
u2 , (3.37)

y(u)∼ 2 cos(πb2 + 2πu)

= 2(cos(πb2) cos(2πu)− sin(πb2) sin(2πu)) . (3.38)

In this expansion the spectral curve now has just a single branch point corresponding to u= 0.
The input to topological recursion then becomes

ω
(b)
0,1(u) =

16π2u
b4

�

cos(πb2) cos(2πu)− sin(πb2) sin(2πu)
�

du , (3.39a)

ω
(b)
0,2(u1, u2) =

�

1
(u1 − u2)2

−
1

(u1 + u2 + b2)2

�

du1 du2

∼
du1 du2

(u1 − u2)2
. (3.39b)

The first term involving cos(2πu) in (3.39a) may appear unfamiliar, but it actually does not
give any contribution to the topological recursion (2.53), because it is continuous around the
branch point u= 0 (in other words, it is projected out by the combination ω(b)0,1(u)−ω

(b)
0,1(−u)

that appears in the recursion kernel). In the semiclassical limit we may then take ω(b)0,1 to be
given by

ω
(b)
0,1(u)∼

8π2e−πi b2

i b4
u sin(2πu)du

=

�

i b4

16π3
eπi b2

�−1

ω
(JT)
0,1 (u) . (3.40)

This is proportional to the input of JT gravity to topological recursion,ω(JT)
0,1 (u)=

u
2π sin(2πu)du

[23], with the constant of proportionality precisely reproducing the renormalization of the
string coupling that we observe in the semiclassical limit of the string amplitudes (3.35). The
remaining normalization factors in (3.35) are produced by the semiclassical limit of the map
between the string amplitudes and the resolvent differentials (3.22). We can similarly zoom
into any of the other branch points of the spectral curve (3.1) and find that, once again, it
reduces to the JT gravity spectral curve; in particular, we also observe an imaginary renormal-
ization of the string coupling, as in (3.40). More generally, the resolvent differentials of the

11In this context, imaginary ℓ is more natural [54,55]. This corresponds to the case where the Liouville momenta
p have the same rather than opposite phase as b.

12In principle we could expand the spectral curve around any of the other branch points, but these would lead
to string amplitudes that are non-perturbatively suppressed compared to (3.35) in the semiclassical limit.
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complex Liouville string reduce to those of JT gravity in the limit (3.32) near the m= 1 branch
point (3.36). In the conventions of this paper, we have

ω(b)g,n(w1, . . . , wn) −→
�

i b4

16π3
eπi b2

�2g−2+n

ω(JT)
g,n (u1, . . . , un) . (3.41)

3.5 Recursion relation

Having established the topological recursion for the matrix integral and the relation between
the resolvent differentials and the string amplitudes, we are now in a position to write down
a recursion relation for the string amplitudes themselves.

Translating the topological recursion (2.53) to the string amplitudes via (3.22), we arrive
at the following recursive representation

2p1A
(b)
g,n(p1, p) = 2

π

2

∞
∑

m=1

b(−1)m sin(2πmbp1)
sin(πmb2)

Res
u=0

§

sin(4πup1)
sin(2πbu) sin(2πb−1u)

�

∫

2qdq 2q′dq′

× 2
�

∑

±
± cos(4πu(q± q′)) cos(2πmb(q∓ q′))

�

(3.42)

× 2
�

A(b)g−1,n+1(q, q′, p) +
g
∑

h=0

∑′

I,J
A(b)h,1+|I|(q, pI)A

(b)
g−h,1+|J |(q

′, pJ )
�

− 2
n
∑

j=2

∫

2qdq
�

∑

±
± cos(4πu(q± p j)) cos(2πmb(q∓ p j))

�

A(b)g,n−1(q, p \ p j)
�ª

.

Here p = {p2, . . . , pn}, and the sum in the third line runs over all subsets I ∪J = {p2, . . . , pn}
excluding (h,I) = (0,;) and (h,J ) = (g,;). The integrals over q, q′ are defined as in the
first case of (3.28). In practice we expand the string amplitudes into sums of terms involving
complex exponentials e2πimbq, and hence the integrand does not exhibit poles in q term-by-
term and we may freely deform the q contour in order to apply (3.28). We can make use
of the symmetry properties of the string amplitudes to simplify this recursive representation
somewhat13

p1A
(b)
g,n(p1, p)

=
π

2
Res
u=0

§

sin(4πup1)
sin(2πbu) sin(2πb−1u)

�

∫

2qdq 2q′dq′ cos(4πuq) cos(4πuq′)A(b)0,3(q, q′, p1)

×
�

A(b)g−1,n+1(q, q′, p) +
g
∑

h=0

∑′

I,J
A(b)h,1+|I|(q, pI)A

(b)
g−h,1+|J |(q

′, pJ )
�

− 2
n
∑

j=2

∫

2qdq cos(4πuq) cos(4πup j)A
(b)
0,3(p1, p j , q)A(b)g,n−1(q, p \ p j)

�ª

. (3.43)

The three different terms in the sum correspond to the three topologically distinct ways of
embedding a pair of pants with a distinguished external leg p1 into the surface Σg,n, as shown

in figure 3. Indeed there is a factor of A(b)0,3 corresponding to this distinguished pair of pants
for each term in the recursion.

13There is an exception. In writing (3.43) we have used the fact that the string amplitudes depend on a particular
momentum q via a sum of terms involving even polynomials in q times factors of sin(2πmbq), for m an integer.
The recursion as written below doesn’t apply for A(b)1,1 because A(b)0,2, which appears in the recursion, does not take
this form. Nevertheless one can verify that the final form of the recursion relation given in equation (3.44) holds
in this case (up to a factor of 1

2 due to a symmetry factor of the configuration).
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p1

p2
A(b)g−1,n+1

p1

p2
A(b)g,n−1

p1

p2

A(b)h,1+|I| A(b)g−h,1+|J |

Figure 3: The three distinct ways of embedding a pair of pants with a distinguished
external cuff (labelled by p1 above) into a surface. These correspond to the three
classes of terms in (3.43) and (3.44). There is a factor of the sphere three-point
amplitude A(b)0,3 corresponding to this pair of pants for each term in the recursion.

We can further massage the representation of the residue in (3.43) to write the recursion for
the string amplitudes in a more conventional form. At the end of the day we find the following
more familiar representation for the recursion relation satisfied by the string amplitudes

p1A
(b)
g,n(p1, p) =

∫

2qdq 2q′dq′Hb(q+ q′, p1)A
(b)
0,3(p1, q, q′)

×

 

A(b)g−1,n+1(q, q′, p) +
g
∑

h=0

∑′

I,J
A(b)h,1+|I|(q, pI)A

(b)
g−h,1+|J |(q

′, pJ )

!

−
n
∑

j=2

∫

2qdq
∑

±
Hb(q, p1 ± p j)A

(b)
0,3(p1, p j , q)A(b)g,n−1(q, p \ p j) . (3.44)

Here the recursion kernel Hb is essentially identical to that which recently appeared in the
recursion relations satisfied by the quantum volumes of the Virasoro minimal string [8]

Hb(x , y) :=
y
2
−

1
2

∫

Γ

du
sin(4πux) sin(4πuy)

sin(2πbu) sin(2πb−1u)
. (3.45)

The contour of integration Γ is shown in figure 4. The recursion kernel also admits the follow-
ing infinite sum representation

Hb(x , y) = −
1

4π
∂y log

�

eπi y2
∏

±
Sb

�

Q
2
− x ± y

��

= y −
1
2

∞
∑

m=0

∑

σ=±

�

b−1σ

1+ e2πi b−1((m+ 1
2 )b−1−x−σy)

−
bσ

1+ e−2πi b((m+ 1
2 )b+x+σy)

�

, (3.46)

where Sb(x) =
Γb(x)
Γb(Q−x) is the double-sine function. We elaborate on some details of the deriva-

tion of this recursive representation in appendix C.
A novel feature compared to recursion relations satisfied by the quantum volumes of the

Virasoro minimal string is the presence of the non-trivial sphere three-point amplitude A(b)0,3 for
each topologically distinct term in the recursion corresponding to the pair of pants involving
p1.14

In order to efficiently implement the recursion, it will be useful to note some regularly
appearing integral formulas involving the recursion kernel. We define for instance

Fk;m,n(y) :=

∫

2xdx x2kHb(x , y) sin(2πmbx) sin(2πnbx) , (3.47)

14Recall that in the Virasoro minimal string V(b)0,3(ip1, ip2, ip3) = 1.
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Γ

u

Figure 4: The contour of integration that defines the recursion kernel (3.45).

for k ∈ Z⩾0 and m, n ∈ Z⩾1. These integrals are simplest to evaluate in the situation that none
of the arguments of the sines (in other words, none of the colors) coincide. In these situations
we simply have

Fk;m,n(y) =
y
2

∫

2xdx x2k sin(2πmbx) sin(2πnbx)

=
(−1)k(2k+ 1)!

2(2πb)2k+2

�

1
(m+ n)2k+2

−
1

(m− n)2k+2

�

y , (3.48)

for m ̸= n. The integral formulas get more complicated when some of the colors coincide. In
this situation the recursion kernel regulates the integral in essentially the same way as in the
Virasoro minimal string [8]. In this case we have

Fk;m,m(y) =
(−1)k(2k+ 1)!
2(4πbm)2k+2

y

+
∑

0⩽ℓ+ j⩽k+1

B2ℓB2 j(1− 21−2ℓ)(1− 21−2 j)(2k+ 1)!b2ℓ−2 j

2(2ℓ)!(2 j)!(2k+ 3− 2ℓ− 2 j)!
y2k+3−2ℓ−2 j , (3.49)

where B2ℓ are the Bernoulli numbers. The latter term above generates the Virasoro minimal
string quantum volumes V(b)g,n that appear in the string amplitudes as in (3.26).

3.6 Cohomological field theory and SU(2)q Yang-Mills theory

We now refine the discussion and consider the cohomology classes in H•(Mg,n,C) that appear
in the intersection number formula for A(b)g,n (3.26). They define a cohomological field theory
(CohFT).15

Definition. Let us recall the definition of a CohFT [26]. Let H be a Hilbert space over C.
Then a CohFT over C is a collection of maps

Ωg,n : H⊗n −→ H•(Mg,n,C) , (3.50)

assigning cohomology classes to collection of vectors. Given a CohFT, one can also define
correlators of gravitational descendants,




τk1
(v1) · · ·τkn

(vn)
�

g =

∫

Mg,n

Ωg,n(v1, . . . , vn)
n
∏

i=1

ψ
ki
i , (3.51)

15We thank Alessandro Giacchetto and Nikita Nekrasov for discussions about this.
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where ψi are the standard psi-classes. These will be related to the string amplitudes. The
maps (3.50) satisfy two axioms:

1. Symmetry: Ωg,n is invariant under simultaneous permutation of its arguments and the
marked points of Mg,n.

2. Factorization: Let ιh,I : Dh,I
∼= Mh,|I |+1 × Mg−h,|I c |+1 −→ Mg,n and

ιirr : Dirr
∼=Mg−1,n+2 −→Mg,n be the embedding maps of the boundary divisors. Then

ι∗h,IΩg,n(v) =
∑

m

Ωh,|I |+1(vI , em)Ωg−h,|I c |+1(vI c , em) , (3.52)

where {em}m=1,...,dim(H) is a complete orthonormal basis. A similar statement holds for
ιirr. In other words, when we restrict the cohomology class to the boundary of moduli
space where the surface separates into two parts, it is given by the product of the classes
on the two parts with a complete set of states inserted at the node.

Sometimes a third axiom of a flat unit is added. It does not hold in the case of interest and we
omit it.

Examples. Let us mention two very simple examples. In both cases the Hilbert space is
one-dimensional and we omit the basis vector.

1. JT-gravity: Ωg,n = exp(2π2κ1), where 2π2κ1 = [ωWP] is the cohomology class of the
Weil-Petersson form. Since the Weil-Petersson form restricts to the direct sum of the
form on both factors, the factorization axiom (3.52) clearly holds. One can recover the
Weil-Petersson volumes out of the gravitational descendant correlators.

2. Virasoro minimal string: Ωg,n = exp
� c−13

24 κ1 −
∑

m⩾1
B2m

2m(2m)!κ2m

�

. The higher kappa-
classes again restrict to their direct sum on both factors and the factorization axiom
holds.

There are many other examples of CohFTs in the literature such as the Hodge class Λ = c(E)
with E the Hodge bundle, Norbury’s Theta-class Θg,n needed for supersymmetric JT-gravity
[56], Witten’s r-spin class [57] (dimH = r − 1), the Chern-character of the Verlinde bundle
[58] (dimH is the number of representations of the current algebra gk), and the pushforward
of Gromov-Witten with target a projective variety X classes to Mg,n [26].

CohFTs and topological recursion. Cohomological field theories are closely related to topo-
logical recursion. In fact, every semi-simple cohomological field theory produces a spectral
curve such that the differentials ωg,n as computed from topological recursion are related to
the descendant correlators as

ωg,n(z1, . . . , zn) =
∑

(m1,k1),...,(mn,kn)




τk1
(em1
) · · ·τkn

(emn
)
�

g

n
∏

i=1

dηki
(zi) , (3.53)

for some set of differentials dηki
(zi). See [25] for the precise formula. Here mi runs over

the set of branch points and ki runs over Z⩾0. This is very similar to what we explained in
appendix B, but it produces a spectral curve with a special choice of coordinates.

The reverse also holds for a global spectral curve under certain conditions. In particular,
it does hold for a compact spectral curve with holomorphic differentials dx(z) and dy(z) [59].
The spectral curve of interest (3.1) is not compact, but dx(z) and dy(z) are holomorphic.
Furthermore, since the sum over the branch points converges absolutely, one can check that
the proofs given in [59, 60] continue to go through. Thus we can indeed uniquely define a
CohFT out of the complex Liouville string. We will not write down explicit formulas since they
become rather complicated.
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The topological field theory. Out of a cohomological field theory, we can always define a
topological field theory by taking out the degree 0 piece of the cohomology and identifying
canonically H0(Mg,n,C)≡ C. Thus we get maps

ΩTQFT
g,n : H⊗n −→ C . (3.54)

This can be directly extracted from (3.26) by taking the degree zero piece of the integrand. We
first notice that in cohomology, any non-trivial graph corresponds to an intersection number
in a lower-dimensional moduli space and does not contribute to the degree zero piece.16,17 It
remains to pick the degree zero piece of the integrand of the quantum volumes, which is the
second example discussed above. The integrand is an exponential and thus its degree zero
piece is 1. Thus we get the degree zero piece from (3.26) by restricting to the trivial graph
and replacing the quantum volume with 1. There are no internal edges and hence we simply
get

A(b),TQFT
g,n (p) =

∞
∑

m=1

�

b(−1)m
p

2 sin(πmb2)

�2g−2+n n
∏

i=1

p
2 sin(2πmbpi) . (3.55)

This is the correlation function of SU(2)q Yang-Mills theory and up to normalization computes
the Schur index of SU(2) N = 2 theories in four dimensions of class S [62]. We also remark
that we would have obtained the trivial TQFT if we had performed this procedure for JT-gravity
or the Virasoro minimal string.

SU(2)q Yang-Mills and the Schur index. SU(2)q Yang-Mills theory (in the zero-area limit)
is the topological field theory associated to the quantum group SU(2)q. Its representations are
labelled by the dimension m ∈ Z⩾1. They have character and quantum dimension

chq(m, a) =
am − a−m

a− a−1
, dimq(m) =

q
m
2 − q−

m
2

q
1
2 − q−

1
2

. (3.56)

Here, a ∈ S1 ⊂ C parametrizes the Cartan torus of SU(2). The TQFT correlators are

Z
SU(2)q
g,n (a) =

∞
∑

m=1

∏n
i=1 chq(m, ai)

dimq(m)2g−2+n
. (3.57)

SU(2)q admits a hermitian dagger when |q| = 1 or when q > 0. We are interested in the case
q > 0. By using the Weyl group symmetry we can assume that 0 < q < 1. When we identify
q = e2πi b2

and a j = −e2πi bp j , we have18

A(b),TQFT
g,n (p) =

�

−
b

p
2sin(πb2)

�2g−2+n n
∏

j=1

p
2 sin(2πbp j)Z

SU(2)q
g,n (a) . (3.58)

Thus, after changing the normalization of the punctures and the Euler term the two theories
agree.19

16More formally, we can write the contribution of a graph Γ as an integral over the moduli space MΓ as in
appendix B. The pushforward (ιΓ )∗ from the inclusion ιΓ : MΓ −→ Mg,n shifts the degree of the cohomology
classes upward by the codimension of MΓ . Thus only MΓ =Mg,n can contribute.

17It is a general feature of CohFTs that the cohomological classes can be written as sums over stable graphs. This
corresponds to the action of the Givental R-matrix [61].

18Recall that bp j ∈ R and thus we indeed have |a j |= 1.
19SU(2)q Yang-Mills theory is a semisimple TQFT and thus the corresponding CohFT is also semisimple as pre-

dicted by the correspondence between spectral curves and CohFTs.
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We can also further relate this to the Schur index of four-dimensional gauge theories. The
relation is well-known and arises by putting 6d N = (2, 0) theory of type A1 on S3×S1

β
×Σg,n

with a suitable partial topological twist [62, 63]. Compactifying on Σg,n leads to the super-
symmetric index of the corresponding class S theory in four-dimensions, while compactifying
on S3×S1

β
leads to 2d SU(2)q Yang-Mills theory on Σg,n. The index obtained in this way is the

Schur index, which is a degeneration of the more general superconformal index. For a class S
theory on Σg,n, this index takes the form

ZSchur
g,n (a) =

∏n
j=1 N (a j)

N 2g−2+n
0

Z
SU(2)q
g,n (a) , (3.59)

where

N (a) = 1
∏∞

m=1(1− qm)(1− a2qm)(1− a−2qm)
, N0 =

1
∏∞

m=2(1− qm)
. (3.60)

Here q = e−β is also real. These infinite products correspond to passing to characters of an
affine algebra. Identifying β = −2πi b2, we can thus write20

A(b),TQFT
g,n (p) =

�

i
p

2b q
13
24

η(b2)

�2g−2+n n
∏

j=1

ϑ1(2bp j|b2)
p

2q
1
8

ZSchur
g,n (a) . (3.61)

This also relates A(b),TQFT
g,n to SL(2,C) Chern-Simons theory through Schur quantization as

explained recently in [64].

4 Checks

In this section, we will demonstrate that the topological recursion based on the spectral curve
(3.1) reproduces all the properties of the string diagrams A(b)g,n that we derived from the world-
sheet in our previous paper [1]. Sometimes it will be convenient to use the form as coming
from the topological recursion and sometimes the recursion relation derived in section 3.5.

4.1 Simple properties

Let us first notice some properties that are obvious from eq. (3.26).

Oddness and one series of trivial zeros. The quantum volumes V(b)g,n are even func-
tions of their arguments. Every external momentum appears additionally in one factorp

2sin(2πmv j
bp j), which shows that A(b)g,n is an odd function of its arguments. The oddness of

the string amplitudes is required from the worldsheet definition due to a property of the leg
factors. The presence of the sine shows also that A(b)g,n vanishes when p j =

m
2b for m ∈ Z and

for any j. In [1], we referred to these zeros as the trivial zeros from the worldsheet since they
are a consequence of the chosen leg factors. There is a second series of trivial zeros located
at p j =

mb
2 . These are not readily visible in the formula (3.26), but follow from the duality

symmetry discussed in section 4.2 below.

20The additional minus sign in the relation between a j and p j corresponds to not inserting (−1)F in the definition
of the Schur index.
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b→−b symmetry. The string diagram A(b)g,n is invariant under b→−b. Under this replace-
ment, (3.26) receives a factor

(−1)n(−1)
∑

v(2gv−2+nv) = (−1)n+(2g−2+n) = 1 , (4.1)

as required from the worldsheet representation of the string amplitudes. Here we used addi-
tivity of the Euler characteristic of the stable graph.

Swap symmetry. A more interesting symmetry is the swap symmetry that sends b → −i b
and p j → ip j simultaneously. This corresponds to swapping the two Liouville CFTs on the
worldsheet. This operation leads to the overall factor

i
∑

v(2gv−2+nv)(−1)#edges(−1)
∑

v(3gv−3+nv) = i2g−2+n(−1)3g−3+n = (−i)n . (4.2)

Here the first of the three factors come from the term raised to the Euler characteristic in
(3.26). For the second, we also rotate pe → ipe for all internal edges, which leads to a Ja-
cobian of −1 for every edge. The third factor comes from the corresponding property of
the quantum volume which was discussed in [8]. We then use that the number of edges is
3g − 3+ n−

∑

v(3gv − 3+ nv). Thus we have

A(−i b)
g,n (ip) = (−i)n A(b)g,n(p) , (4.3)

as required from the worldsheet.

Special case of (g , n) = (0, 4) and (1, 1). Finally, we notice that (3.26) can be straightfor-
wardly evaluated in the special cases (g, n) = (0, 3), (0,4) and (1, 1), see Table 1. We investi-
gated those cases in detail in our previous paper [1] and provided overwhelming evidence for
the correctness of (3.26) in these cases.

4.2 Duality symmetry

We claim that A(b)g,n as computed by (3.26) satisfy

A(b
−1)

g,n (p) = (−1)n A(b)g,n(p) , (4.4)

in accordance with the corresponding symmetry on the worldsheet. On the worldsheet, this
property is completely manifest from the bootstrap definition of Liouville theory. The sign
(−1)n comes from the transformation property of the leg factors. This property is non-trivial
from the matrix integral side. Notice that from the matrix integral point of view, duality ex-
changes x(z) and y(z) in the spectral curve and thus corresponds to exchanging the two matri-
ces in the two-matrix integral. Let us note that this property is very constraining. In particular,
we could have assumed that the quantum volumes V(b)g,n appearing in (3.26) are some arbitrary

polynomials of b2+b−2

4 and p2
j of degree 3g−3+n. Imposing duality symmetry recursively fixes

them all.

x -y symmetry of topological recursion. For the partition functions A(b)g,0 = ωg,0 (also de-
noted by Fg in the literature), this is a consequence of the x-y symmetry discussed in sec-
tion 2.4.

Direct proofs for low g and n. For (g, n) = (0, 3), (0, 4), (1, 1), we gave direct proofs of
duality symmetry in our previous paper [1]. One can in principle push these to higher (g, n),
but it becomes more and more cumbersome.
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Consequence of the recursion relation. Instead, one can deduce the duality relation in-
ductively from the recursion relation (3.44). The key observation is that the recursion kernel
is invariant under the duality symmetry

Hb−1(x , y) = Hb(x , y) , (4.5)

while the sphere three-point amplitude is odd

A(b
−1)

0,3 (p1, p2, p3) = −A
(b)
0,3(p1, p2, p3) . (4.6)

It is simplest to see the former from the rewriting of the recursion kernel in terms of the double-
sine function as in (3.46). We can then proceed inductively, starting with A(b)0,4, A(b)1,1 and so on.
Applying the recursion relation, we find

p1A
(b−1)
g,n (p1, p) =

∫

2qdq 2q′dq′Hb(q+ q′, p1)(−1)A(b)0,3(p1, q, q′)

× (−1)n+1

 

A(b)g−1,n+1(q, q′, p) +
g
∑′

h=0

∑

I,J
A(b)h,1+|I|(q, pI)A

(b)
g−h,1+|J |(q

′, pJ )

!

−
n
∑

j=2

∫

2qdq
∑

±
Hb(q, p1 ± p j)(−1)A(b)0,3(p1, p j , q)(−1)n−1A(b)g,n−1(q, p \ p j)

= (−1)np1A
(b)
g,n(p1, p) , (4.7)

as expected from the worldsheet. The only subtlety has to do with the contour of integra-
tion in the q, q′ integrals that appear in the recursive representation. In practice we compute
these by expanding the string amplitudes into linear combinations of terms proportional to
q2ke±2πimbqe±2πinbq and apply (3.28). This procedure is unaffected by the duality transforma-
tion, so the above discussion is not modified.

Similarly, it is straightforward to show that the recursion kernel satisfies

H−i b(i x , i y) = iHb(x , y) , (4.8)

which may be used to demonstrate the swap symmetry (4.2) from the recursive representation
of the string amplitudes.

4.3 Analytic structure

We next discuss the analytic structure of (3.26) in more detail. We start by noticing that
the formula (3.26) converges on the physical spectrum where bp j ∈ R thanks to the expo-
nential suppression of the factors sin(πmb2)−2gv+n−nv for large m. Convergence persists in a
neighborhood of the physical spectrum, but not for arbitrary choices of p j . The corresponding
divergences lead to the rich analytic structure of the string amplitudes that we discussed in
our previous paper [1]. We will now see how to recover that analytic structure.

Analytic continuation. Let us first show that (3.26) can be analytically continued to complex
momenta p. For this, we exchange the sum over the colors in (3.26) with the integral of pe
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and resum them in a different way. We write

∞
∑

m=1

(−1)mN
∏n

j=1 sin(2πmbp j)

sin(πmb2)N
= (2i)N−n

∞
∑

m=1

(−1)mN

∏n
j=1(e

πimbp j − e−πimbp j )

(eπimb2 − e−πimb2)N

= (−1)N (2i)N−n
∞
∑

m=1

∑

σ1,...,σn=±
σ1 · · ·σn

×
∞
∑

k=0

�

N + k− 1
N − 1

�

(−1)mN e2πimb(
∑

j σ j p j+(k+
N
2 )b)

=
∞
∑

k=0

∑

σ1,...,σn=±

(−1)N (2i)N−nσ1 · · ·σn

�N+k−1
N−1

�

(−1)N e−2πimb(
∑

j σ j p j+(k+
N
2 )b) − 1

. (4.9)

Here N = 2g − 2+ n corresponds to the component of the stable graph under consideration.
These steps are all valid for small enough

∑

j σ j bp j , but the infinite sum in the last expression
always converges and thus defines the analytic continuation of the expression to arbitrary
momenta.

We can use this rewriting for every vertex in the stable graph. This leads naturally to a
sum over a set of graphs that we denote by G∞,±

g,n . For a graph in G∞,±
g,n , we associate a color

to every vertex that we call kv to distinguish it from mv . We also associate a sign σ to every
half-edge (i.e. both ends of each internal edge have a sign and every external edge has a sign).
The automorphism group is the autormorphism group without decorations. We get in this way

A(b)g,n(p) = (
p

2bi)2g−2+n
∑

Γ∈G∞,±
g,n

1
|Aut(Γ )|

(4.10)

×
∫ ′

∏

e∈EΓ

(−2pe dpe)

�∏

j∈Iv

iσ jp
2

��2gv−3+nv+kv
2gv−3+nv

�

V(b)gv ,nv
(ipv)

(−1)nv e2πi b(
∑

j∈Iv
σ j p j−(2gv−2+nv+2kv)

b
2 ) − 1

.

Let us also give a more invariant definition of the primed integral. We can regularize the
integral by inserting a factor e−ϵpe . Provided we chose the phase of ϵ appropriately, this makes
the integral convergent, even for the zero mode that we want to project out. We can thus
define

∫ ′

dp f (p)≡ lim
ϵ→0

∫

dp e−ϵp f (p) . (4.11)

In the limit, we by definition pick out the regular term and discard all divergent terms. This
precisely implements the prescription (3.28). The upshot of this is that we may treat the
primed integral as an ordinary contour integral and perform contour deformations etc. In
particular, since the integrand is an analytic function, this defines a (possibly multivalued)
analytic continuation of (3.26) to all values of complex momenta.

Analogy with Feynman diagrams. Let us next explain how discontinuities are generated
from this integral representation. Discontinuities come from the integrals over the internal mo-
menta. This is precisely in analogy with Feynman diagrams, where discontinuities come from
loop momentum integrations.21 For a single integral, a discontinuity is generated whenever
the poles and/or endpoints of the integrand undergo a monodromy that drags the integration
contour along. The new integration contour is a linear combination of the old contour and

21This analogy can presumably be made more precise, since we expect that one can identify the stable graphs
with the Feynman diagrams of closed string field theory on this background in a particular gauge.
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a new contribution which captures the discontinuity of the integral. For higher-dimensional
integrals, this is mathematically described by the Picard-Lefschetz theorem.

We will not need to go into the details of this, but simply need to recall that in QFT there
is a simple set of cutting rules that captures the imaginary part of a Feynman diagram in terms
of simpler diagrams obtained by cutting the original diagram and putting the momentum on
the cut propagator on-shell. The most well-known form of such cutting rules are the Cutkosky
rules [65], but it is actually more convenient to use the so-called holomorphic cutting rules
introduced in [66], which express the imaginary part of the amplitude as a sum over all possible
cuttings.22 In favorable cases such as the computation of the lowest threshold discontinuity,
one can also show that the imaginary part equals the discontinuity as a consequence of the
Schwarz reflection principle.

The logic here is the same, except for two differences: (i) There is no momentum conser-
vation and thus we integrate over all internal momenta, even at tree level and (ii) putting a
particle on-shell means that we are taking the residue of the integrand at a pole.

Cutting rules. Suppose we want to compute the discontinuity of A(b)g,n around a given p∗.
Then we have to cut the internal lines of the appearing graphs in all possible ways. This
means that we cut lines which can go ‘on-shell’ meaning that the integrand develops a pole.

If we denote the contribution of a graph Γ to A(b)g,n(p1, . . . , pn) by the graph itself, we have
for example

Disc
p∗=p1+p2+

Q
2=0

00

p3

p4

p1

p2

= 00

p3

p4

p1

p2

(4.12)

since there is a pole when the internal momentum is pe = p∗ or pe = −p∗. This creates a
discontinuity, since these two poles undergo a monodromy around pe = 0, the end-point of
the integral. Hence we get

00

p3

p4

p1

p2

= −2πi Res
p=p∗
(−2p) 00

p3

p4

pp
p1

p2

− 2πi Res
p=−p∗

(−2p) 00

p3

p4

pp
p1

p2

= 8πip∗ Res
p=p∗

A(b)0,3(p1, p2, p)A(b)0,3(p3, p4, p) . (4.13)

The overall sign can be deduced by carefully tracking in which sense the contour is dragged
from the monodromy. A similar logic generalizes to more complicated diagrams. For each
diagram, we have to sum over all possible ways to cut the internal lines. There can be more

22In the Cutkosky cutting rules, one only sums over simple cuttings, but this necessitates complex conjugation
of one part of the diagram.
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than one choice, for example

Disc
p1+p2+

Q
2=0

010

p3

p4

p1

p2

= 010

p3

p4

p1

p2

+ 010

p3

p4

p1

p2

. (4.14)

The cut then divides the diagram into either two disconnected pieces or — when cutting a loop
— gives a connected graph of genus g−1. We can then reorganize the sum over stable graphs
as a sum over stable graphs of the pieces G∞h,|I |+1 × G

∞
g−h,|I c |+1 or G∞g−1,n+2. The sum over these

stable graphs then precisely reconstructs A(b)h,m+1(pI , p)A(b)g−h,m+1(pI c , p) and A(b)g−1,n+2(p, p, p),

respectively. In the latter case, we get an additional factor of 1
2 , since we lose a Z2 factor in

the automorphism group of the graph that flips the cutted edge. Furthermore, the poles that
undergo the monodromy are in this case at p = ±1

2 p∗. For example, we have

Disc
p∗=p1+

Q
2=0

0 p1 = 0 p1

= −
1
2
× 2πi

�

Res
p= 1

2 p∗
+ Res

p=− 1
2 p∗

�

(−2p)A(b)0,3(p1, p, p)

= 2πp∗ Res
p= 1

2 p∗
A(b)0,3(p1, p, p) . (4.15)

The general result can hence be stated as

Disc
p∗=0

A(b)g,n(p) = 2πip∗ Res
p= 1

2 p∗
A(b)g−1,n+2(p, p, p)

+ 4πip∗ Res
p=p∗

∑

0⩽h⩽g
I⊆{1,...,n}

stable

A(b)h,|I |+1(pI , p)A(b)g−h,|I c |+1(pI c , p) . (4.16)

Notice that we overcounted by a factor of two by summing over all genera h and subsets I ,
which we compensated by another factor of 1

2 . This reproduces the discontinuity that we
derived from the worldsheet in [1].

Poles from recursion. The representation (4.9) that facilitates the analytic continuation of
the string amplitudes exhibits more poles in the external momenta than we expect based on
the worldsheet analysis discussed in our previous paper [1]. In particular, it exhibits poles
when

∑

j

σ j p j = (2g − 2+ n+ 2k)
b
2
+mb−1 , k ∈ Z⩾0 , m ∈ Z+

n
2

, (4.17)

whereas we know from the worldsheet analysis that the string amplitudes A(b)g,n should only
have poles for

∑

j

σ j p j = r b+ sb−1 , r, s ∈ Z+
n
2

, |r|, |s|⩾
2g − 2+ n

2
. (4.18)
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That the extra poles must cancel is guaranteed by the duality symmetry but the cancellation
mechanism is not at all manifest in this representation.

To see that we only get the poles that we expect from the worldsheet analysis, it is more
straightforward to instead employ the recursive representation of the string amplitudes and
proceed inductively. In the recursive representation (3.44), poles of the string amplitude are
generated when singularities of the constituent string amplitudes pinch the contour of integra-
tion over the internal momenta q, q′. For concreteness, consider the last term in the recursive
representation

p1A
(b)
g,n(p1, p) ⊃ −

n
∑

j=2

∫

2qdq
∑

±
Hb(q, p1 ± p j)A

(b)
0,3(p1, p j , q)A(b)g,n−1(q, p \ p j) . (4.19)

Consider in particular the following singularities of the sphere three-point amplitude A(b)0,3 that
appears in the recursion

q = σ1p1 +σ j p j + r b+ sb−1 , r, s ∈ Z+
1
2

, |r|, |s|⩾
1
2

. (4.20)

The recursion kernel Hb does not contribute any singularities in the internal momentum q.
On the other hand, the other constituent string amplitude A(b)g,n−1 is assumed to exhibit poles
at the following values of the momentum q

q = −σ′ · p ′ − r ′b− s′b−1 , r ′, s′ ∈ Z+
n− 1

2
, |r ′|, |s′|⩾

2g − 3+ n
2

. (4.21)

Here p ′ is a stand-in for p\p j and similarlyσ′ is a vector of signs {σ2, . . . ,σn}withσ j omitted.
These singularities pinch the contour of integration over q when r ′ and s′ have the same sign
as r and s, respectively. This generates poles in the full string amplitude when

σ1p1 +σ · p = (r + r ′)b+ (s+ s′)b−1 ,

r + r ′ , s+ s′ ∈ Z+
n
2

, |r + r ′| , |s+ s′|⩾
2g − 2+ n

2
, (4.22)

exactly as expected from the worldsheet in (4.18). Essentially identical considerations apply
to the other terms in the recursive representation of the string amplitudes.

4.4 Dilaton equation

We will now check that (3.26) satisfies the dilaton equation. We already did this for A(b)1,1 and

A(b)0,4 in our previous paper [1].
For the general case, we translate the dilaton and string equation (2.54) of topological

recursion to A(b)g,n using (3.22).

Dilaton equation of topological recursion. We have dF0,1(z) =ω
(b)
0,1(z) (3.3) such that

F0,1(z) =
2
b

�

1
Q

cos(πQ
p

z) +
1

Q̂
cos(πQ̂

p
z)
�

, (4.23)

where we recall that Q̂ = b−1 − b and Q = b + b−1. Thus on the LHS of the dilaton equation
(2.54a) becomes

1
b

∞
∑

m=1

Res
zn+1=z∗m

�

2
Q

cos(πQ
p

zn+1) +
2

Q̂
cos(πQ̂

p

zn+1)
�

ω
(b)
g,n+1(z, zn+1) . (4.24)
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We notice that this has precisely the right form for the transformation (3.22) with p = 1
2Q and

1
2Q̂ for the two terms. The other coordinates z are spectators and can be transformed as in
(3.22) on both sides of the dilaton equation. This leads to

A(b)g,n+1(p, p = 1
2Q) +A(b)g,n+1(p, p = 1

2Q̂) = −b (2g − 2+ n)A(b)g,n(p) . (4.25)

First string equation. Let us first consider the case of k = 0 in (2.54b). We can take the
inverse Laplace transform of (2.54b). Consider first the left hand side. Since only the leg n+1
is important, we can momentarily put n= 0. We have

∞
∑

m=1

Res
z=z∗m

2cos(πb
p

z)ω(b)g,1(z) = bA(b)g,1(p =
b
2 ) , (4.26)

where we compared to the definition (3.22). We know that the A(b)g,1(p =
b
2 ) = 0 as conse-

quence of the ‘trivial zeros’. Similarly, the right-hand side of the string equation trivializes
when one translates it into A(b)g,n and confirms the existence of this zero of A(b)g,n.

Second string equation. Let us now repeat the discussion with the second string equation
(2.54b) with k = 1, where we learn something new. For the left-hand side, we may again
assume that n= 1, which yields

∞
∑

m=1

Res
z=z∗m

x(z)y(z)ω(b)g,1(z) = −2
∞
∑

m=1

Res
z=z∗m

�

cos
�

πQ
p

z
�

+ cos
�

πQ̂
p

z
�

�

ω
(b)
g,1(z)

= −
�

QA(b)g,1(p =
1
2Q) + Q̂A(b)g,1(p =

1
2Q̂)

�

. (4.27)

To work out the right-hand side, we can put n= 1 and only consider the corresponding term.
It is more convenient to do this in the w-coordinate and use (3.21). This leads to

−
∫

γ

dw e2πip1w

4πip
∂w

�

x(w)
dx(w)

ω
(b)
g,1(w)

�

= −
b

2π

∫

γ

e2πip1w cot(b−1πw)ω(b)g,1(w)

=
b

2πi

∫

γ

e2πip1w
�

1+ 2
∞
∑

s=1

e−2πi b−1sw
�

ω
(b)
g,1(w)

=
b

2πi

∫

γ

e2πip1wω
(b)
g,1(w)

= 2bp1 A
(b)
g,1(p1) . (4.28)

Here, we first integrated by parts and then expanded the cotangent in an infinite absolutely
convergent series. We then assumed that 0 < Re(bp1) < 1, which allows us to drop all terms
but the first one in the infinite sum. In the last line, we recognize the definition (3.22). For
Re(bp j)< 0 we can infer the result because A(b)g,n(p) is an odd function in all p j ’s. We can write
the result as

QA(b)g,n+1(p, p = 1
2Q) + Q̂A(b)g,n+1(p, pn+1 =

1
2Q̂) = −2

n
∑

j=1

q

(bp j)2 A
(b)
g,n(p) . (4.29)

Equivalence to worldsheet dilaton equations. We can take appropriate linear combina-
tions of (4.25) and (4.29) to obtain

A(b)g,n+1(p, pn+1 =
1
2Q̂) = −

�

1
2Q(2g − 2+ n)−

Æ

p2
�

A(b)g,n(p) , (4.30a)

A(b)g,n+1(p, pn+1 =
1
2Q) =

�

1
2Q̂(2g − 2+ n)−

Æ

p2
�

A(b)g,n(p) . (4.30b)
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We used that b−1
p

(bp)2 =
p

p2 for p in the neighborhood of the physical spectrum and
remain agnostic about the precise location of the branch cut. These are precisely the dilaton
equations that were derived from the worldsheet theory in [1].

5 Conclusion

Let us discuss a few futher applications and generalizations.

The landscape of minimal string theories. Bosonic string theories in two (or less than two)
target space dimensions are quite special since they don’t exhibit a tachyon. They are described
on the worldsheet by a CFT with effective central charge ceff ⩽ 2.23 Only a few examples are
known and some are listed in table 2. Most interestingly, all of these examples admit a dual
description. We hope that a full understanding of this two-dimensional landscape will teach
us lessons about the more realistic and vast landscape of full superstring theory. Another way
to plot this landscape at least for the examples involving Liouville theory is in terms of the
central charge of the matter theory. They are arranged in the complex plane as indicated in
figure 5.

For cm = 1, there are many more “minimal” string theories, most importantly the c = 1
string (for reviews, see [17,67–72]). Its dual description involves matrix quantum mechanics
[68] (rather than a matrix integral), which describes the S-matrix elements of massless bosons
scattering off the Liouville wall in a two-dimensional target space. Hence it is a qualitatively
distinct holographic duality from the class of models depicted in figure 5, and for this reason
we did not include it in the table 2. It would be very interesting to better understand the
relationship between the c = 1 string and the broader landscape of minimal string theories, as
this may represent an instance of the emergence of time, with the dual description transitioning
from a matrix integral to matrix quantum mechanics.

The different minimal string theories that we explored are not unrelated. When consid-
ering the complex Liouville string as a function of b2, we may analytically continue the per-
turbative data away from b2 ∈ iR. We may in particular consider the limit b2 → Q. In
this limit, one of the Liouville theories has central charge c ⩽ 1 and the limiting theory is
known as non-analytic Liouville theory [73, 74]. The case with c = 1 is also better known as
Runkel-Watts theory [75]. The structure constants and hence the degenerated string ampli-
tudes limb2→ p

q
A(b)g,n(p) are piecewise analytic functions of the momenta. We also suspect that

one can recover from this directly the VMS amplitude by taking p, q→∞ with p
q → b2 ∈ R,

thanks to the relations summarized in [76]. Finally, given that the spectral curve degenerates
to the spectral curve of the minimal string, it should also be possible to take a suitable limit
and recover the minimal string amplitudes. In other words, it should be possible to recover the
amplitudes of these other theories by taking special limits of the complex Liouville string. Thus
the complex Liouville string seems to sit at the top of the hierarchy and should in particular
still have lessons in stock about the other minimal string theories appearing in table 2.

Deformations. The complex Liouville string admits many deformations. They can be de-
scribed uniformly on the matrix model side by deforming the spectral curve while staying in
the same universality class. Such deformations fall into two classes as was discussed in [36]
and we expect them to behave similarly in the complex Liouville string: deformations of the
locations of the nodal singularities and deformations that open up the nodal singularities to

23Recall that the effective central charge is defined by ceff = c − 24hmin, where hmin is the conformal weight of
the lightest operator in the theory (assumed to be a scalar for the purposes of this discussion). This is the quantity
that controls the asymptotic growth of states at high energy.
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1

13+ iR

cm

Figure 5: The possible values of the matter central charge for the 2d string theories of
table 2. The c ⩽ 1 region contains a discrete set of points corresponding to the (2, p)
minimal string, a dense set of rational points corresponding to the (p, q) minimal
string, and a continuum spanned by the Virasoro minimal string.

Table 2: The landscape of 2d string theories. All theories also exist as unorientable
string theories, which maps to the corresponding orthogonal or symplectic matrix
integral.

Worldsheet Dual description Spectral curve

(2, p) minimal string:
(2, p)minimal model⊕ Liouville

matrix integral
x(z) = −4z2

y(z) = 2Tp(z)
(p, q) minimal string:
(p, q)minimal model⊕ Liouville

two matrix integral
x(z) = −2Tp(z)
y(z) = 2Tq(z)

Virasoro minimal string:
timelike Liouville ⊕ Liouville

matrix integral
x(z) = −z2

y(z) = sin(2πbz) sin(2πb−1z)
z

complex Liouville string:
Liouville ⊕ (Liouville)∗

two matrix integral
x(z) = −2cos(πb−1pz)
y(z) = 2 cos(πb

p
z)

handles. The former deformations are easy to describe on the worldsheet as they correspond
to deforming the worldsheet by the on-shell marginal vertex operators

∫

d2z b−1b̃−1Vp. Defor-
mations which open up the nodal singularities are more difficult; they were interpreted in [36]
as ZZ-instanton backgrounds. It is not known how to describe them directly in the worldsheet
formalism where they likely correspond to a non-local deformation, perhaps by a ground ring
operator Om,n. It would be interesting to explore such deformations more systematically.

String field theory perspective. As mentioned, we can view the graphical representation of
the string amplitudes through (3.26) as Feynman diagrams of the string field theory descrip-
tion, whose vertices are essentially given by the quantum volumes of the Virasoro minimal
string [8]. However, that analogy is only superficial since the string field theory Hilbert space
also consists of all worldsheet vertex operators (annihilated by L−0 and b−0 ) and additionally
comes with a huge gauge redundancy. In (3.26) this gauge redundancy seems to be fixed
and even the appearing intermediate momenta are all on-shell. The closed string field theory
action S has to satisfy the quantum BV master equation {S, S}+∆S = 0, which gives a rela-
tion between different vertices [77]. We note the structural similarity between this condition
and the corresponding quadratic condition on the resolvents in the matrix integral (A.17b),
but we have not been able to make the connection precise.24 Indeed it has recently been
shown in [78] that hyperbolic string vertices of closed string field theory obey a version of

24We thank Victor Godet for a discussion about this.
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Mirzakhani’s recursion relation. A string field theory description that is closer related to the
structure observed in eq. (3.26) is via a two-dimensional Kodaira-Spencer theory on the spec-
tral curve [79]. That theory has a cubic vertex which roughly maps to the trivalent nature of
degenerated stable graphs.

Uniform transcendentality and symbol alphabet. The string amplitudes in this theory en-
joy certain uniform transcendentality properties. These are most clearly visible in the real-
ization (4.10), which converges for all values of the momenta. Note that we can express the
denominator through the function Li0(x) =

x
1−x . We can then simply successively integrate

out all the momenta by using the identity

∫ ∞

0

dy Lin(ae−y) ym−1 = Γ (m)Lin+m(a) . (5.1)

Using that the quantum volumes are polynomials of order 3g−3+n and taking also the factors
of π in (4.10), the amplitude can hence be expressed as a sum of terms

P3g−3+n−
∑

j ℓ j
(p)

∑

∑

ℓ j⩽3g−3+n

π−2
∑

j ℓ j
∏

j

Li2ℓ j

�

e
2πi b(

∑

i∈I j
σi pi+r j b+s j b

−1)�
, (5.2)

for different choices of ℓ j , r j and s j and polynomials P of degree 3g − 3 + n −
∑

j ℓ j in p2
i .

These sums are always absolutely convergent and we wrote down the explicit formula for A(b)0,4

and A(b)1,1 in [1]. This is precisely the polylogarithmic structure of scattering amplitudes that is
also found in ordinary QFT scattering amplitudes, except that the arguments in our case are
exponentials of momenta. We naturally assign a transcendentality degree to (5.2) by letting
the transcendentality of Lim to be the weight m and the transcendentality of π to be 1. The
transcendentality of every term appearing in π2(3g−3+n)A(b)g,n(p) is then 2(3g − 3 + n). We
should note that similar uniform transcendentalities are subject of ongoing research for more
realistic string amplitudes [80].

Supersymmetric variant. We expect that most of the results of this paper as well as [1] can
be generalized to the type 0B superstring. In that case, one couples two N = 1 Liouville theo-
ries with complex central charges 15

2 + iR. This is natural given that the usual parametrization
of the central charge reads

c =
3
2
+ 3(b+ b−1)2 , (5.3)

which translates again to b2 ∈ iR. The structure constants for this theory are known [81,82].
We expect that there is also a duality similar to the corresponding story for the minimal super-
string [36, 83, 84], with the N = 1 super Virasoro minimal string [8, 85] volumes appearing
as the string vertices in this case. The form of the spectral curve of the minimal superstring
suggests that the dual matrix integral is closely related to the bosonic case [36].

Disordered holography. The work of Saad, Shenker and Stanford [23] has initiated a shift
in the community, where the old matrix integral is reinterpreted as a disordered quantum
mechanical system with the matrix playing the role of the Hamiltonian. One may asked about
a corresponding interpretation for the two-matrix integral. The first matrix M1 can be directly
interpreted as the Hamiltonian, but the interpretation of the second matrix M2 is less clear. Let
us offer one possible interpretation. We can think of H = M1 ⊗M2 as the Hamiltonian acting
on a bipartite system. The two systems are only entangled via the mixing term tr(M1M2) in the
matrix integral potential (2.1). The boundary matrix integral is then a disorder average over
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the Hamiltonians of both subsystems. Since the string amplitudes are only computed from
the resolvent of the first matrix, we can view the subsystem of the second matrix as a hidden
sector that we don’t directly have access to.

Relation to SL(2,C) BF-theory. It is well-known that the first-order formulation JT-gravity
is classically equivalent to a mapping class group gauged SL(2,R) BF-theory (see e.g. [23]).
Similarly, the Virasoro minimal string has a quantum group Uq(sl(2,R)) symmetry and can be
understood as a mapping class group gauged version of Uq(sl(2,R)) BF-theory. It is tempting
to conjecture a similar realization of the complex Liouville string as a BF theory. The nat-
ural candidate is BF-theory based on the quantum group Uq(sl(2,C)). The quantum group
Uq(sl(2,C)) is known as the quantum Lorentz group and consists of two copies of the modular
double Uq(sl(2,R)) [64]. The “gravitational” Uq(sl(2,R)) is diagonally embedded inside the
Uq(sl(2,C)). This is in line with the fact that vertex operators are labelled by SL(2,C) repre-
sentations and the topological sector discussed in section 3.6 is SU(2)q Yang-Mills theory in
the zero-area limit (which is equivalent to BF-theory).
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A Some background on two-matrix integrals

We provided a brief introduction to two-matrix integrals in section 2. Here we fill some of the
gaps in the explanation there in the interest of being self-contained.
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A.1 Derivation of the loop equations

Let us derive the loop equations (2.19). We do this by using the invariance of the two-matrix
integral

〈R(I)〉=
∫

RN2
[dM1][dM2]R(I)e

−N tr(V1(M1)+V2(M2)−M1M2) , (A.1)

under a change of variables. Here R(I) denotes resolvents for the matrix M1. We separately
consider two different change of variables and combine them later.

First loop equation. We consider the shift

M2→ M2 + ϵ
1

x −M1
, (A.2)

for infinitesimal ϵ. Since the shift does not involve M2, there is no Jacobian and terms of order
ϵ only come from the shifts of the term in the exponent of (A.1). We get

�

tr

�

V ′2(M2)

x −M1
−

x
x −M1

+ 1

�

R(I)

�

= 0 . (A.3)

Second loop equation. For this we consider the change of variables

M1→ M1 + ϵ
1

x −M1

V ′2(y)− V ′2(M2)

y −M2
+ ϵ

V ′2(y)− V ′2(M2)

y −M2

1
x −M1

. (A.4)

Notice that the symmetrization is necessary to ensure that M1 remains a hermitian matrix after
the shift. We now also get contributions from a Jacobian and the resolvents. Let us evaluate
them in turn.

For the Jacobian, we notice that for a shift of the type M1 → M1 + ϵAM m
1 B for constant

matrices A and B and m⩾ 0, we get to first order in ϵ,

Jac= 1+ ϵ
∑

i, j

∂ (AM m
1 B)i j

∂M1,i j

= 1+ ϵ
∑

i, j,k,ℓ

m−1
∑

n=0

(AM n
1 )ik

∂M1,kℓ

∂M1,i j
(M m−n−1

1 B)ℓ j

= 1+ ϵ
∑

i, j,k,ℓ

m−1
∑

n=0

(AM n
1 )ik δikδ jℓ (M

m−n−1
1 B)ℓ j

= 1+ ϵ
m−1
∑

n=0

tr AM n
1 tr BM m−n−1

1 . (A.5)

Thus for the change of variables (A.4) we obtain the result by expanding in a Taylor series in
M1:

Jac= 1+ 2ϵ
∞
∑

m=0

x−m−1
m−1
∑

n=0

tr M n
1

V ′2(y)− V ′2(M2)

y −M2
tr M m−n−1

1

= 1+ 2ϵ tr
1

x −M1

V ′2(y)− V ′2(M2)

y −M2
tr

1
x −M1

. (A.6)
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Next, we discuss the contribution from the resolvent. We have

R(x i) = tr
1

x i −M1
→ R(x i) + 2ϵ tr

1
(x i −M1)2

1
x −M1

V ′2(y)− V ′2(M2)

y −M2
, (A.7)

where we used the cyclicity of the trace. In general we have

RM1
(I) = RM1

(x1)RM1
(x2) · · ·RM1

(xn) = tr
1

x1 −M1
× · · · × tr

1
xn −M1

. (A.8)

In total we get the loop equation

­

tr
1

x −M1
tr

1
x −M1

V ′2(y)− V ′2(M2)

y −M2
RM1
(I)
·

− N

�

tr
V ′1(M1)

x −M1

V ′2(y)− V ′2(M2)

y −M2
RM1
(I)− tr

1
x −M1

M2
V ′2(y)− V ′2(M2)

y −M2
RM1
(I)

�

+

® n
∑

k=1

RM1
(I \ xk) tr

1
(xk −M1)2

1
x −M1

V ′2(y)− V ′2(M2)

y −M2

¸

= 0 , (A.9)

where the first line comes from the Jacobian, the second from the variation of the exponent
and the third from the variation of the resolvents.

Master loop equation. We can use the first loop equation (A.3) to rewrite the first term
in the second line of (A.9). We then recall the definitions (2.20a) and (2.20b). It is the
straightforward algebra to obtain the master loop equation (2.19).

A.2 Analyticity of the resolvents

We now explain the analyticity properties of the resolvents that we used in the derivation
of topological recursion in section 2.4. The crucial step for this was taken in [22] and we
essentially reproduce their argument.

Main claim. The main claim of [22] is that

〈U(x(z), y)R(I)〉 !
= −bd2

N
­­ d2
∏

i=1

�

y − V ′1(x(z)) +
1
N R(x(z i))

�

R(I)
··

I
, (A.10a)

〈P(x(z), y)R(I)〉 !
= −bd2

N
­­ d2
∏

i=0

�

y − V ′1(x(z)) +
1
N R(x(z i))

�

R(I)
··

I

−
1
N

n
∑

k=1

∂xk

〈U(xk, y)R(I \ xk)〉
x(z)− xk

. (A.10b)

Notice that the product in the brackets excludes the term i = 0 in the first line corresponding
to the physical sheet, while the second line contains also the physical sheet.

Modified brackets. Let us explain the double bracket notation in (A.10).25 Let us first mo-
tivate it. We want to modify correlators such as to get rid off the singularity in R0,2 when
x(z) = x(z′), see (2.42). We will only define this modified correlator for products of resolvents

25It was denoted by a quote in [22].
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as appears in (A.10). To define it, we decompose the correlator into its connected components
as in (2.3). Thus we first expand 〈〈· · · 〉〉I into connected components as in (2.3) with

〈〈R(x1, . . . , xn)〉〉c,I ≡ 〈R(x1, . . . , xn)〉c +
δn,2δx1 ̸∈I or x2 ̸∈I

(x1 − x2)2
. (A.11)

In other words all connected two-point functions are modified in this way except for
〈R(xk, xℓ)〉c with {xk, xℓ} ⊆ I . Thus we keep the subset I in the notation in (A.10) to indi-
cate which propagators are not modified.

Let us note that (A.10) is non-singular after the modification since the modified propagator
is non-singular for i ̸= j, see (2.42).

Proof. To prove (A.10), we first notice that the right-hand sides of (A.10a) and (A.10b) are
polynomials of degree d2 and d2 + 1 in y , respectively. The coefficients of yd2 and yd2+1 are
trivial to extract and match by construction with (2.20a) and (2.20b).

Let us next check (A.10) to leading order in large N . The leading term comes from the
fully disconnected contribution and the second line of (A.10b) is also suppressed. Thus (A.10b)
reduces at large N to the equality

P0(x(z), y)
!
= −bd2

d2
∏

i=0

(y − y(z i)) . (A.12)

This is true by construction because it is just the product over the d2 + 1 roots of P0(x , y) in
y . Since also the leading coefficients match, this is a true equality. Similarly, (A.10a) gives the
expected result at large N .

To complete the proof, let us remember from the discussion in section 2.3 that the loop
equations (2.19) have a unique solution under the assumption that 〈P(x(z), y)R(I)〉c is a poly-
nomial of degree ⩽ d2 in y (with the exception of the g = 0 piece for I = ; where it is a
degree d2 + 1 polynomial). This is satisfied for (A.10b) since for the connected quantities the
leading term −bd2

N yd2+1 only shows up for g = 0 and I = ;. Thus the assumption is satisfied
and it only remains to show that (A.10) satisfies the loop equations (2.19). Let us compute
RHS− LHS of the loop equations (2.19) and insert (A.10). This leads to

RHS− LHS= −bd2
N
­­ d2
∏

i=0

�

y − V ′1(x(z)) +
1
N R(x(z i))

�

R(I)
··

I ,x(z)

+ bd2
N
­­ d2
∏

i=0

�

y − V ′1(x(z)) +
1
N R(x(z i))

�

R(I)
··

I

−
n
∑

k=1

bd2

(x(z)− xk)2

­­ d2
∏

i=1

�

y − V ′1(x(z)) +
1
N R(x(z i))

�

R(I \ xk)
··

I\xk

. (A.13)

The first line comes from the first term on the RHS of (2.19), while the second line comes from
inserting (A.10b) for 〈P(x , y)R(I)〉. The term appearing on the RHS of (A.10b) cancels with
one of the terms in the second line of the loop equations (2.19). Clearly, the first and second
line of (A.13) almost cancel, they just differ in the treatment of the double bracket correlator.
The second line also shifts the propagators of the form 〈R(x(z), xk)〉c, while the first one does
not. This means that the first two lines combined exactly cancel the third line and one obtains

LHS−RHS= 0 . (A.14)

This proves (A.10).
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Analyticity. Finally, it is simple to derive analyticity properties of the correlators that are
needed for the topological recursion. One expands (A.10b) for large y . Let us note that the
correction term in (A.10b) is manifestly single-valued in x(z) and only has poles away from
the branch points. Extracting the coefficient of yd2 leads to

d2
∑

i=0

〈〈R(x(z i), I)〉〉I = analytic in x(z) . (A.15)

“Analytic in x(z)” means a single-valued function that is analytic around a neighborhood of
the branch points. Notice that this statement is quite non-trivial since the resolvents typically
have singularities at the branch points of x(z), but these cancel out in the sum. One can in fact
give an explicit formula for the RHS of (A.15) by keeping track of the other terms of order yd2

in (A.10). We will in the following denote equality up to such analytic terms by ∼.
We can similarly extract the coefficient of order yd2−1 which leads to the statement

∑

i ̸= j

〈〈R(x(z i),x(z j), I)〉〉I ∼ 0 . (A.16)

Connected parts and genus expansion. Given (A.15) and (A.16), one can restrict to the
connected part. This gives

0∼
d2
∑

i=0

〈〈R(x(z i),x(I))〉〉c , (A.17a)

0∼
∑

i ̸= j

〈〈R(x(z i),x(z j),x(I))〉〉c +
∑

J⊆I

〈〈R(x(z i),x(J))〉〉c〈〈R(x(z j),x(J c))〉〉c . (A.17b)

This is proven recursively in the size of the set I from (A.15) and (A.16). For example, if we
expand (A.15) into connected components all terms except for the connected part appearing
in (A.17a) are analytic by recursion and thus it also follows for (A.17a). A similar argument
demonstrates (A.17b).

A.3 Derivation of the topological recursion

We insert the genus expansion and use the definition ofωg,n (2.48), (2.49) into (A.17) to find

0∼
d2
∑

i=0

ωg,n(z
i , I) , (A.18a)

0∼
∑

i ̸= j

�

ωg−1,n+1(z
i , z j , I) +

∑′

0⩽h⩽g
J⊆I

ωh,|J |+1(z
i , J)ωg−h,|J c |+1(z

j , J c)
�

. (A.18b)

To treat the special case ω0,1, we needed to make use of (A.18a), which implies that the extra
pieces in the definition (2.49) still give something analytic.

To bring the second equation into a form that is useful to derive the recursion relation, we
isolate the terms involving ω0,1 and bring them on the other side

−2
∑

i ̸= j

ω0,1(z
i)ωg,n(z

j , I)∼
∑

i ̸= j

�

ωg−1,n+1(z
i , z j , I) +

∑

0⩽h⩽g
J⊆I

ωh,|J |+1(z
i , J)ωg−h,|J |+1(z

j , J c)
�

,

(A.19)
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where the prime on the sum means that the terms h = 0, J = ; as well as h = g, J = I are
omitted.

We now apply the operation
∑

m branch points

Res
z=z∗m

Km(z1, z) (A.20)

to both sides of (A.19). Analytic terms do not contribute to this operation since they have by
assumption no singularities at the branch points.

Right-hand-side. Let us start by applying (A.20) to the RHS. Only the terms with
{z i , z j} = {z,σm(z)} can contribute since the others all cancel out. For example, if
z j ̸= z,σm(z), the residue at z i = z and z i = σm(z) will cancel because of (A.18a). Thus
we get

RHS= 2
∑

m

Res
z=z∗m

Km(z1, z)
�

ωg−1,n+1(z,σm(z), I) +
∑′

0⩽h⩽g
J⊆I

ωh,|J |+1(z, J)ωg−h,|J |+1(σm(z), J c)
�

.

(A.21)

Left-hand-side. Applying it to the LHS of (A.19) is more interesting. We find

LHS= −2
∑

m

Res
z=z∗m

Km(z1, z)
�

ω0,1(z)ωg,n(σm(z), I) +ω0,1(σm(z))ωg,n(z, I)
�

(A.22)

= −2
∑

m

Res
z=z∗m

Km(z1, z)
�

−ω0,1(z)ωg,n(z, I) +ω0,1(σm(z))ωg,n(z, I)
�

(A.23)

=
∑

m

Res
z=z∗m

∫ z

z′=σm(z)
ω0,2(z1, z′)ωg,n(z, I) (A.24)

=
∑

m

Res
z=z∗m

�

∫ z

z′=∗
ω0,2(z1, z′)−

∫ σm(z)

z′=∗
ω0,2(z1, z′)

�

ωg,n(z, I) (A.25)

=
∑

m

Res
z=z∗m

�

∫ z

z′=∗
ω0,2(z1, z′)ωg,n(z, I)−

∫ z

z′=∗
ω0,2(z1, z′)ωg,n(σm(z), I)

�

(A.26)

= 2
∑

m

Res
z=z∗m

∫ z

z′=∗
ω0,2(z1, z′)ωg,n(z, I) . (A.27)

In (A.22) we used that only {z i , z j} = {z,σm(z)} can contribute to the residue as
above. In (A.23), we used again (A.18a) along with the observation that the terms
Km(z1, z)ω0,1(z)ωg,n(z j , I) with z j ̸= z,σm(z) do not contribute to the residue. We then insert
the definition (2.52) in (A.24) and split the integral in (A.25), where ∗ is an arbitrary refer-
ence point on the surface. In (A.26) we change variables z → σm(z) in the second term and
in (A.27) use (A.18a) again.

Finally, we can rewrite this as the sum over all the other residues on the surface. On a
general spectral curve, one has to be careful since the appearing form is not single-valued in
z. This turns out to be not an issue because of the property (2.29). We thus just restrict to the
sphere case for simplicity, where

∫ z

z′=∗
ω0,2(z1, z′) =

dz1

∗ − z1
−

dz1

z − z1
, (A.28)
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is a single-valued function in z. The only other singularity of the integrand in (A.27) is at
z = z1 and thus

LHS= −2 Res
z=z1

∫ z

z′=∗
ω0,2(z1, z′)ωg,n(z, I) (A.29)

= 2ωg,n(z1, I) . (A.30)

Thus the recursion relation (2.53) follows.

B Intersection theory

In this appendix, we derive the expression (3.26) of A(b)g,n as computed from the matrix integral
in terms of intersection numbers.

B.1 General formula

Let us first fill the gaps in our explanation of (2.64) and define the various parameters that
enter it. We will assume that the spectral curve under consideration has a global rational
parametrization. This parametrization doesn’t necessarily have to be one-to-one and to em-
phasize this we will denote the coordinate as w. The expressions one gets for the intersection
numbers depend very much on the choice of this coordinate w and different choices lead to
very different looking expressions. Thus we will make a judicial choice in our example.

Bm1,r,m2,s is defined in terms of the following expansion coefficients. Let us expand w1
and w2 in ω0,2 around the branch points w∗m1

, w∗m2
. To do this, we should first define a local

coordinate ζm(w) that satisfies

ζm(σm(w)) = −ζm(w) . (B.1)

We can choose ζm(w) =
Æ

x(w)− x(w∗m). In the case that we discuss below, the local Galois
inversion acts linearly and we can simply choose ζm(w) = w−w∗m.

ω0,2(w1, w2)∼
� δm1,m2

(ζm1
(w1)− ζm2

(w2))2

+ 2π
∞
∑

r,s=0

Bm1,r,m2,s ζm1
(w1)rζm2

(w2)s

Γ ( r+1
2 )Γ (

s+1
2 )

�

dζm1
(w1)dζm2

(w2) . (B.2)

Notice that this in principle defines Bm1,r,m2,s for all non-negative integers r and s, even though
only even integers enter in (2.64). The differentials dηm,ℓ(w) are defined as

dηm,ℓ(w)
w∼w∗

m′∼
�

−
2δm,m′Γ (ℓ+

3
2)p

πζm′(w)2ℓ+2
− 2
p
π

∞
∑

r=0

Bm′,r,m,2ℓζm′(w)r

Γ ( r+1
2 )

�

dζm′(w) . (B.3)

The quantities t̂m,k are defined in terms of the Taylor expansion of ω0,1 around the branch
points. Let

ω0,1(w) =
∞
∑

k=0, 1
2 ,1, 3

2 ,...

p
π tm,k

2 Γ (k+ 3
2)
ζm(w)

2k+2dζm(w) . (B.4)

The half-integer expansion coefficients cancel out of the recursion kernel (3.45) and will there-
fore not appear in the intersection number. formulas. Finally, t̂m,k is defined in terms of tm,k
by requiring the equality

∞
∑

k=0

tm,kuk = exp

�

−
∞
∑

k=0

t̂m,kuk

�

, (B.5)

as a formal power series in C[u].
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B.2 The spectral curve of the complex Liouville string

In our case, these three formulas are easily evaluated. We get much more convenient expres-
sions if we use the following parametrization of the spectral curve,

x(w) = −2 cos(πb−1w) , y(w) = 2 cos(πbw) , (B.6)

where we remember that the branch points are located at w∗m = bm with m ∈ Z⩾1. ω(b)0,2 takes
the following form in these coordinates

ω
(b)
0,2(w1, w2) =

�

1
(w1 −w2)2

−
1

(w1 +w2)2

�

dw1 dw2 . (B.7)

The Galois inversion has the explicit form σm(w) = 2w∗m − w and we can hence choose
ζm(w) = w−w∗m above. For the coefficients Bm1,r,m2,s we get by inserting (B.7) into (B.2)

Bm1,r,m2,s =
2(−1)r

(2b)r+s+2

�

δm1 ̸=m2

(m1 −m2)r+s+2
−

(−1)s

(m1 +m2)r+s+2

�

Γ (r + s+ 2)

Γ ( r+2
2 )Γ (

s+2
2 )

. (B.8)

Hence

∞
∑

r,s=0

Bm•,2r,m◦,2sψ
r
•ψ

s
◦ =

1
p
π

∞
∑

d=0

Γ (d + 3
2)b
−2d−2

×
�

δm• ̸=m◦

(m• −m◦)2d+2
−

1
(m• +m◦)2d+2

�

(ψ• +ψ◦)
d . (B.9)

For the differentials dηm,ℓ, we get from (B.3)

dηm,ℓ(w) = −
2Γ (ℓ+ 3

2)p
π

�

1
(w−w∗m)2ℓ+2

−
1

(w+w∗m)2ℓ+2

�

dw . (B.10)

The coefficients tm,k can be evaluated from their definition (B.4) and read for k ∈ Z⩾0

tm,k =
8(π2 )

2k+3(−1)k+m sin(πmb2)
�

(b+ b−1)2k+2 − (b− b−1)2k+2
�

b Γ (k+ 2)
. (B.11)

The power series appearing in (B.5) is hence equal to

∞
∑

k=0

tm,kuk =
8π(−1)m+1 sin(πmb2)e−

1
4 (b

2+b−2)π2u sinh(1
2π

2u)

bu
, (B.12)

and so

∞
∑

k=0

t̂m,kuk = log
�

b(−1)m

8π sin(πmb2)

�

+
b2 + b−2

4
π2u− log

�

sinh(1
2π

2u)

u

�

. (B.13)

We can thus read off

t̂m,0 = log
�

b(−1)m

4π3 sin(πmb2)

�

, (B.14a)

t̂m,1 =
b2 + b−2

4
π2 , (B.14b)

t̂m,2k = −
B2kπ

4k

2k(2k)!
, (B.14c)
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with B2k the Bernoulli numbers. Finally, we can use that

κ0 = 2g − 2+ n , (B.15)

is just a number. Writing (2.64) out leads to

ω(b)g,n(w ) = 23g−3+n(−1)n
∑

Γ∈G∞g,n

1
|Aut(Γ )|

∏

v∈VΓ

�

b(−1)mv

4π3 sin(πmv b2)

�2gv−2+nv

×
∫

MΓ

∏

v∈VΓ

e
b2+b−2

4 π2κ1−
∑

k
B2kπ

4k

(2k)(2k)!κ2k

×
∏

(•,◦)∈EΓ

∞
∑

d=0

Γ (d + 3
2)p

π b2d+2

�

δm• ̸=m◦

(m• −m◦)2d+2
−

1
(m• +m◦)2d+2

�

(ψ• +ψ◦)
d

×
n
∏

i=1

∞
∑

ℓ=0

2Γ (ℓ+ 3
2)p

π

�

1
(wi −w∗mi

)2ℓ+2
−

1
(wi +w∗mi

)2ℓ+2

�

ψℓi dw . (B.16)

Translating to A(b)g ,n. We can now apply eq. (3.22) to translate this into a formula for A(b)g,n.
Observe that

Res
w=w∗m

cos(2πpw)
p

dηm,ℓ(w) =
2π sin(2πmbp)(−1)ℓ(πp)2ℓ

Γ (ℓ+ 1)
. (B.17)

Thus the corresponding insertion in the integral over MΓ becomes

∞
∑

ℓ=0

2π sin(2πmi bpi)(−1)ℓ(πpi)2ℓ

Γ (ℓ+ 1)
ψℓi = 2π sin(2πmbp)e−π

2p2
i ψi . (B.18)

Notice that after these operations, π2 appears homogeneously in the cohomology de-
gree. Since we are picking out the top form on moduli space, we get a factor of
π2 dimMΓ = π2(3g−3+n)−2|EΓ |. The number of edges is equal to the difference of the dimension
of the total moduli space and the dimension of the moduli space of the graph Γ , since every
edge corresponds to a degenerated cycle of the surface. Using also that the Euler characteris-
tics of the different components of the stable graphs add up to the total Euler characteristic,
we can write

A(b)g,n(p) =
∑

Γ∈G∞g,n

1
|Aut(Γ )|

∏

v∈VΓ

�

b(−1)mv

p
2 sin(πmv b2)

�2gv−2+nv
∫

MΓ

∏

v∈VΓ

e
b2+b−2

4 κ1−
∑

k
B2kκ2k
(2k)(2k)!

×
∏

(•,◦)∈EΓ

∞
∑

d=0

Γ (d + 3
2)p

π(πb)2d+2

�

δm• ̸=m◦

(m• −m◦)2d+2
−

1
(m• +m◦)2d+2

�

(ψ• +ψ◦)
d

×
n
∏

i=1

e−p2
i ψi
p

2sin(2πmi bpi) . (B.19)

Integration over internal momenta. As a final step, we notice that for m• ̸= m◦, we have
∫

(−2p dp)
p

2 sin(2πm1 bp)
p

2 sin(2πm2 bp)e−p2(ψ•+ψ◦)

=
∞
∑

d=0

Γ (d + 3
2)p

π(πb)2d+2

�

1
(m• −m◦)2d+2

−
1

(m• +m◦)2d+2

�

(ψ• +ψ◦)
d , (B.20)
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as a formal power series inψ• andψ◦. If m• = m◦, we omit by definition of the primed integral
(3.28) the divergent term. Thus we can write

A(b)g,n(p1, . . . , pn) =
∑

Γ∈G∞g,n

1
|Aut(Γ )|

∏

v∈VΓ

�

b(−1)mv

p
2sin(πmv b2)

�2gv−2+nv
∫ ′

∏

e∈EΓ

(−2pe dpe)

×
∏

e∈EΓ

p
2sin(2πm•bpe)

p
2 sin(2πm◦bpe)

n
∏

i=1

p
2 sin(2πmi bpi)

×
∏

v∈VΓ

∫

Mgv ,nv

e
b2+b−2

4 κ1−
∑

k
B2k

(2k)(2k)!κ2k−
∑

j∈Iv
p2

jψ j . (B.21)

Finally, we use that the remaining intersection number is precisely the quantum volume de-
fined in [8] to recover (3.26).

C Derivation of the recursive representation of the string ampli-
tudes

Here we fill in the details of the derivation of the recursive reperesentation of the string am-
plitdues (3.44) starting from the spectral curve (3.1) of the complex Liouville string. In this
discussion it is again most convenient to parameterize the spectral curve in terms of the w
coordinates so that

x(w) = −2 cos(πb−1w) , y(w) = 2 cos(πbw) , (C.1)

and

ω
(b)
0,1(w) = −

4π cos(πbw) sin(πb−1w)
b

dw , (C.2a)

ω
(b)
0,2(w1, w2) =

�

1
(w1 −w2)2

−
1

(w1 +w2)2

�

dw1 dw2 . (C.2b)

The branch points of the spectral curve correspond to w = ±mb for m ∈ Z⩾1, with the local
Galois inversion given by σm(w) = 2mb − w. The higher resolvent differentials are then
determined by the topological recursion (2.53) with the recursion kernel given by (3.13).

To proceed, we will focus on the first term in the recursion relation (3.44); the other
terms follow from nearly identical manipulations. Consider in particular the one-point string
amplitude at any genus, A(b)g,1(p1) (the analysis is identical for n⩾ 1, with the other momenta
p2, . . . , pn spectating for what follows). From the relation between the string amplitudes and
the resolvent differentials (3.21) together with the topological recursion for the latter (2.53)
we have26

p1A
(b)
g,1(p1) =

∞
∑

m1=1

Res
w1=m1 b

cos(2πp1w1)ω
(b)
g,1(w1)

⊃ −
∞
∑

m1=1

Res
w1=m1 b

cos(2πp1w1)
∞
∑

m=1

Res
w=mb

K(b)m (w1, w)ω(b)g−1,2(w,σm(w)) . (C.3)

In the second line we have focused on the first term in the topological recursion (2.53), with
the sum over m corresponding to the sum over branch points of the spectral curve. We now

26Throughout this appendix it is understood that we omit the dwi factors from the resolvent differentials ω(b)g,n.
This in particular leads to an extra minus sign in front of (C.3) compared to (2.53).
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swap the order of the sums and their corresponding residues, and use the fact that viewed as
a function of w1, the summand only has poles at w1 = w and σm(w), to arrive at

p1A
(b)
g,1(p1) ⊃

∞
∑

m=1

Res
w=mb

b sin(2πmbp1) sin(2πp1(mb−w))
8π sin(πmb2) sin(πb−1w) sin(πb(mb−w))

ω
(b)
g−1,2(w,σm(w)) . (C.4)

Rewriting ω(b)g−1,2 in terms of A(b)g−1,2
27 and w= mb+ 2u inside the sum, this then becomes

p1A
(b)
g,1(p1) ⊃

∞
∑

m=1

πb(−1)m sin(2πmbp1)
sin(πmb2)

Res
u=0

§

sin(4πup1)
sin(2πbu) sin(2πb−1u)

×
∫

2qdq 2q′dq′ sin(2πq(mb+ 2u)) sin(2πq′(mb− 2u))A(b)g−1,2(q, q′)
ª

. (C.5)

This is the first term of the recursive representation as first quoted in the main text in equation
(3.42).

We then use the symmetry properties of the string amplitudes and recognize the sum over
m that appears as that which defines A(b)0,3 to recast this as

p1A
(b)
g,1(p1) ⊃

π

2
Res
u=0

§

sin(4πup1)
sin(2πbu) sin(2πb−1u)

×
∫

2qdq 2q′dq′ cos(4πuq) cos(4πuq′)A(b)0,3(p1, q, q′)A(b)g−1,2(q, q′)
ª

. (C.6)

In order to simplify the representation, we would like to exchange the integral over u that
defines the residue with those over q and q′. In order to do this, we rewrite

Res
u=0
= −

∫

b(R+iϵ)

du
2πi

+

∫

b(R−iϵ)

du
2πi
−
∑

k∈Z ̸=0

Res
u= kb

2

, (C.7)

as shown in figure 6. On the upper and lower parts of the contour, we can replace
cos(4πuq) cos(4πuq′) by e4πiu(q+q′) and e−4πiu(q+q′), respectively. Now all integrals are con-
vergent and we may exchange the u integral with the q, q′ integrals. The u integral may then
be further simplified with a principal value prescription which picks up part of the residue at
u = 0 and cancels the remaining residues on the right-hand side of (C.7). All together this
gives

p1A
(b)
g,1(p1) ⊃

∫

2qdq 2q′dq′
�

p1

2
−

1
2

∫

Γ

du
sin(4πup1) sin(4πu(q+ q′))

sin(2πbu) sin(2πb−1u)

�

︸ ︷︷ ︸

Hb(q+q′,p1)

×A(b)0,3(p1, q, q′)A(b)g−1,2(q, q′) , (C.8)

where the contour Γ is shown in figure 4. This is the first term in the final form of the recursive
representation as written in (3.44) in the case n = 1. The other terms follow from essentially
identical considerations that we will not spell out here.

27Recall that the inverse transform that expresses the resolvents in terms of the string amplitudes is given by
(3.24).
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u

⇒

u

Figure 6: The deformation of the u contour in defining the residue at u= 0.
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