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Abstract

We investigate the invertible and non-invertible symmetries of topological finite-group
gauge theories in general spacetime dimensions, where the gauge group can be abelian
or non-abelian. We focus in particular on the 0-form symmetry. The gapped domain
walls that generate these symmetries are specified by boundary conditions for the gauge
fields on either side of the wall. We investigate the fusion rules of these symmetries
and their action on other topological defects including the Wilson lines, magnetic fluxes,
and gapped boundaries. We illustrate these constructions with various novel examples,
including non-invertible electric-magnetic duality symmetry in 3+1d Z2 gauge theory,
and non-invertible analogs of electric-magnetic duality symmetry in non-abelian finite-
group gauge theories. In particular, we discover topological domain walls that obey
Fibonacci fusion rules in 2+1d gauge theory with dihedral gauge group of order 8. We
also generalize the Cheshire string defect to analogous defects of general codimensions
and gauge groups and show that they form a closed fusion algebra.
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1 Introduction

Symmetries are powerful tools for understanding quantum systems. For instance, symmetries
can provide hints about the long-distance behavior of physical systems even when they become
strongly coupled. A famous example is the Lieb-Schultz-Mattis (LSM) theorem that constrains
the dynamics of lattice models and the connection of these ideas to ’t Hooft anomalies of
generalized symmetries [1–6].

The notion of symmetry was given an intrinsic definition in terms of topological operators
and their correlation functions in [7]. A frontier area of exploration is symmetries in field
theories in general spacetime dimensions, where the topological operators or the corresponding
topological quantum field theories are described by higher fusion categories.1 Topological
quantum field theories in general spacetime dimensions also play important role in exploring
the dynamical consequences of symmetry in general gapped or gapless quantum systems such
as constraining whether the symmetry can be realized on the boundary by symmetric gapped
phases or trivially gapped phases [11–15] (see also [16] for related constructions). Thus,
understanding the properties of topological operators or topological quantum field theories in
general spacetime dimensions is important for learning dynamics of general quantum systems
from symmetry.

Finite-group topological gauge theories [17] provide a fruitful playground to explore these
notions. They can arise in various settings such as gapped phases of lattice models and
quantum field theories and topological codes. Finite-group gauge theories are also relevant
in experiments, most prominently Z2 gauge theory in s-wave superconductors where U(1)
electromagnetism is broken to Z2 by Cooper pairing [18]. In recent years, there are also
experimental realizations of ground state wavefunctions for gauge theories with Z2 gauge
group (e.g., [19]) and dihedral gauge group of order 8 [20] in 2+1d by quantum processors.

1In this work we will only consider fully topological operators, leaving cases with general subsystem symmetries
to future work. See e.g., [8–10] and the references therein for examples of gapped domain walls and interfaces in
fracton models.
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The invertible symmetries, i.e., symmetries that have an inverse transformation, in finite-
group gauge theories have been discussed extensively in the literature of symmetry-enriched
topological orders (SET) [21–26]. In particular, recently invertible symmetries in finite-group
gauge theories have important applications to new fault-tolerant logical gates in topological
quantum codes [27–34]. Invertible symmetries in finite-group gauge theories also provide
construction for new automorphism codes, e.g., [35–39].

In addition to invertible symmetries, finite-group gauge theories can have non-invertible
symmetry, where the generating topological operators do not obey group-law fusion, and
in particular do not have an inverse. Such non-invertible topological defects can be present
in various gapless or gapped quantum systems, see [40–49] for early work on this subject.
Meanwhile, examples of non-invertible topological domain wall defects in finite-group gauge
theory are discussed in various literature [23,28,50–59]. In 2+1d, such topological domain
walls or boundaries correspond to certain condensation of bulk topological excitations called
Lagrangian algebras [60]. On the other hand, the gapped domain walls and boundaries in
higher dimensions are less understood (see [61–63] for recent studies for the gapped boundaries
of Z2 gauge theory in 3+1d).

In this work, we will investigate general symmetries, both invertible and non-invertible,
in finite-group topological gauge theories. We will focus on the topological domain walls
in general spacetime dimension. Since topological finite-group gauge theories are naturally
defined on the lattice (see e.g., [17]), we will investigate the symmetries by placing the theories
on the lattice. A companion paper [100] will explore the relationship of these symmetries to
condensations.

1.1 Summary of results

Gauge theories with a finite gauge group G can be defined by a path integral on the lattice [17].
A flat gauge field configuration is a map that assigns to each oriented edge a group element
gi j ∈ G and satisfies a flatness condition for every 2-simplex of the triangulated manifold. Gauge
transformations are maps that assign to each vertex a group element hi ∈ G and transform
a flat gauge field configuration gi j to hi gi jh

−1
j . The total action is a product of local terms

classified by group cohomology HD(G, U(1)) whose elements are functions that assign a well-
defined phase depending on the values of the gauge field configuration in each D-simplex. The
partition function is then given by a summation over gauge equivalence classes of flat gauge
field configurations and is weighted by the topological action (see Section 2 for a review).

Domain walls and gapped boundaries on the lattice Gapped boundaries of untwisted
gauge theory with a finite gauge group G in general dimension can be constructed from
subgroups K ≤ G and a choice of topological action α ∈ HD−1(K , U(1)). Given this data, we
construct a gapped boundary BK ,α by restricting the gauge field configurations to be in the
subgroup K and by attaching the topological action α ∈ HD−1(K , U(1)) along the boundary
∂M. Motivated by the folding trick, we construct a domain wall DH,α(Σ) by having gauge
fields on the subgroup H ≤ G × G and by attaching the topological action α ∈ HD−1(H, U(1))
along the codimension-one submanifold Σ.

Fusion of domain walls and action on gapped boundaries Despite being simple, this
definition is generic because it applies to any group G and dimension D. Furthermore, some
of the fusion rules for the codimension-one topological operators can be derived in a very
simple way from this description. One of the main contributions of this paper is to derive the
fusion ring structure of the domain walls DH,α with subgroup H ≤ G×G and topological action
α ∈ HD−1(H, U(1)) as elements of one of the following two families:
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• H = K(φ) ≡ {(φ · k, k) : k ∈ K} with K Ã G and φ ∈ Aut(G) and a topological action
α ∈ HD−1(K , U(1)) evaluated on the right entry of K(φ).

• H = KL × KR, with KL , KR Ã G and α = αL × αR with αL ∈ HD−1(KL , U(1)) and
αR ∈ HD−1(KR, U(1)).

We show that these two families are generated by the domain walls:

• Automorphism domain walls: DG(φ) , with φ ∈ Aut(G);

• Diagonal domain walls: DK(id),α, with K Ã G and α ∈ HD−1(K , U(1));

• Magnetic domain wall: DG×G;

which obey the following fusion rules:

DG(φ) ×DG(φ′) =DG(φ◦φ′) , (1.1)

DK(id),α ×DK ′(id),α′ =
|G|
|K · K ′|

D(K∩K ′)(id),α·α′ , (1.2)

DK(id)L ,αL
×DG×G ×DK(id)R ,αR

=DKL×KR,αL×αR
, (1.3)

DG×G ×DK(id) ,α ×DG×G = Z(K ,α)DG×G , (1.4)

DG(φ) ×DK(id) ,α =DK(φ),α , (1.5)

DK(id),α ×DG(φ) =DG(φ) ×Dφ−1(K),φ∗α =D(φ−1(K))(φ),φ∗α , (1.6)

DG(φ) ×DG×G =DG×G ×DG(φ) =DG×G , (1.7)

with φ ◦φ′ the automorphism composition of φ,φ′ ∈ Aut(G); α ·α′|K∩K ′ ∈ HD−1(K ∩K ′, U(1));
|G|/|K · K ′| the 0-form partition function of G/K · K ′ gauge theory on Σ; Z(K ,α) the partition
function of K gauge theory twisted by α on Σ; and φ∗α the pullback of α by φ : φ−1(K)→ K .

In addition, we show that the domain walls that generate this fusion ring have the following
action on the gapped boundaries:

DG(φ) ×BK ,α = Bφ(K),φ−1∗α , (1.8)

DK(id),α ×BK ′,α′ =
|G|
|K · K ′|

BK∩K ′,α·α′ , (1.9)

DG×G ×BK ,α = Z(K ,α)BG . (1.10)

Transformation on other operators Group elements and gauge transformations along Σ in
the presence of DH,α(Σ) are restricted to the subgroup H. From this feature, we can derive the
transformation of other operators on the domain walls. As an example, it is easy to show that:

D1 ·Wρi
=
∑

ρk∈irreps

didkWρk
, D1 ·Mg = 0 , (1.11)

DG×G ·Wρi
= 0 , DG×G ·Mg =

∑

[k]∈Cl(G)

Mk , (1.12)

DG(φ) ·Wρi
=Wρi ·φ−1 , DG(φ) ·Mg = Mφ(g) . (1.13)

for all simple Wilson lines Wρi
and magnetic defects Mg where di is the dimension of the

irreducible representation ρi .
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Higher codimensional topological operators: Cheshire strings In the definition of the
domain wall DH,α(Σ), a crucial ingredient is the orientation of the normal bundle NΣ. It allows
us to consistently define the global meaning of left and right associated with the left and right
components of the subgroup H < G × G. Diagonal domain walls, however, are orientation
reversal invariant and can be generalized as higher codimensional operators. The dimension-n
generalization of the diagonal domain walls are classified by subgroups K < G and a topological
action α ∈ Hn(K , U(1)) and obey the fusion rule:

DK(id),α(Σn)×DK ′(id),α′(Σn) =
|G|
|K · K ′|

D(K∩K ′)(id),α·α′(Σn) , (1.14)

with Σn a n-dimensional submanifold of M. This fusion rule generalizes the fusion rule of
Cheshire strings [64,65].

Non-invertible electric-magnetic duality domain wall Note that in the data that specifies a
domain wall, dimension dependence comes from the topological action α ∈ HD−1(H, U(1)). By
working out the particular case of G = Z2 gauge theory in D = 3, we compute the fusion, action
on boundaries and transformation of other operators for the domain wall associated with the
subgroup H = Z2×Z2 Ã Z2×Z2 with the non-trivial topological action α2 ∈ H2(H, U(1)) = Z2.
We find

DZ2×Z2,α2
×DZ2×Z2,α2

= 1 , (1.15)

DZ2×Z2,α2
×B1 = BZ2

, DZ2×Z2,α2
×BZ2

= B1 , (1.16)

DZ2×Z2,α2
·W = M , DZ2×Z2,α2

·M =W , (1.17)

showing that DZ2×Z2,α2
is the electric-magnetic duality symmetry defect. The procedure we fol-

low for the computation is more general and shows thatDG×G,α generalizes the electric-magnetic
duality to higher dimensions, generic gauge groups G and topological action α ∈ HD−1(G, U(1)).
This class of domain walls mixes invertible electric and magnetic operators and obeys a non-
invertible fusion in general. For instance, in the theory with G = D4 (the dihedral group of
order 8), and D = 3, the domain wall associated with the subgroup H = D4 × D4 and the
non-factorized element α2 ∈ H2(D4 ×D4, U(1)) = Z2 ×Z2, obeys the Fibonacci fusion rule:

DD4×D4,(1,1) ×DD4×D4,(1,1) = 1+DD4×D4,(1,1) , (1.18)

and mixes magnetic and electric operators.

2 Review of finite-group gauge theory on the lattice

In this section we will review basic properties of finite-group gauge theories on the lattice.
These theories can be defined in general spacetime dimension D and are classified by tuples
(G, [αD]) with G a finite group and [αD] ∈ HD(G, U(1)) a D-cohomology class. Such theories
can describe liquid gapped phases, i.e., gapped phases with fully mobile excitations. While
gapped phases in D = 3 can be described by modular tensor category, gapped phases in D = 4
and higher spacetime dimension are more constrained, and topological finite-group gauge
theories provide an important class of representative examples [66–68]. Furthermore, these
theories are examples of topological gauge theories and provide an elementary illustration of
the categorical approach to quantum field theory [69, 70]. Now we summarize a few of its
properties.
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• Gauge field configurations and gauge transformations. Let us denote the gauge group
by G, and the spacetime manifold by M of general spacetime dimension D ≥ 2. We as-
sume M is orientable and connected. We triangulate the spacetime manifold, enumerate
its vertices {vi : 0≤ i ≤ n}, and define a gauge field configuration as a map g⃗ that assigns
to each edge [vi , v j] such that i < j a group element gi j ≡ g⃗([vi , v j]) ∈ G. A path in the
triangulation of M is a sequence of vertices connected by edges γ = (vi1 , . . . , vin), and
the holonomy along a closed path (with i1 = in) is defined by

gγ = gi1 i2 . . . gin−1 in , (2.1)

where gi j ≡ g−1
ji whenever i > j. A gauge field configuration is said to be flat if the

holonomy (flux) along the boundary of every 2-simplex [vi , v j , vk] of the triangulation of
M is trivial:

g(vi ,v j ,vk) = gi j · g jk · gki = 1 . (2.2)

This local flatness condition implies that the holonomy along a closed loop depends only
on the homotopy class of the path γ ∈ π1(M). Therefore, a flat gauge field configuration
can be described globally by a flat connection a ∈ Hom(π1(M), G) where gγ = a(γ), and
Hom indicates that a defines a group homomorphism under concatenation of loops in
M.

The gauge field configurations g⃗ and g⃗ ′ are gauge equivalent if

g ′i j = hi · gi j · h−1
j , (2.3)

for some map h⃗ that assigns to each vertex vi a group element hi ≡ h⃗(vi) ∈ G. We call the
map h⃗ a gauge transformation and we say that it changes the gauge field configuration from
g⃗ to g⃗ ′. Conversely, two flat connections a, a′ ∈ Hom(π1(M), G) are gauge equivalent if
there exists h ∈ G such that a′(γ) = h · a(γ) · h−1 for every γ ∈ π1(M). We denote this
set by Hom(π1(M), G)/G.

• Topological action and group cohomology. The total action is a product of local terms,
one for each D-simplex of the triangulation of M (which we also denote by M), and is
given by

∏

[vi1 ,...,viD+1
]∈M

αD(gi1 i2 . . . , giD iD+1
)εi , (2.4)

with εi = ±1 depending on whether the orientation of the D-simplex agrees with that
of M and with [αD] ∈ HD(G, U(1)).2 The n-th group cohomology Hn(G, U(1)) is a finite
abelian group defined as the quotient of n-cocycles by n-coboundaries. Specifically, the
set of n-cochains Cn is the set of functions αn : Gn→ U(1) and the coboundary operator
δ(n) : Cn→ Cn+1 is

δ(n)αn(g1, . . . , gn+1) =αn(g1, . . . , gn)
(−1)n+1

αn(g2, . . . , gn+1)

×
n
∏

i=1

αn(g1, . . . , gi · gi+1, . . . , gn+1)
(−1)i .

(2.5)

The set of n-cocycles is defined by Zn(G, U(1)) = {αn ∈ Cn : δ(n)αn = 1} and the set
of n-coboundaries by Bn(G, U(1)) = {αn ∈ Cn : αn = δn−1αn−1, with αn−1 ∈ Cn−1}. It
follows from the definition of the coboundary operator that δ(n) ·δ(n−1) = 1 so that the

2The positive orientation of the D-simplex is obtained by having i1 < · · ·< iD+1.
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set of n-coboundaries is a subgroup of the set of n-cocycles. The n-th group cohomology
of algebraic cocycles of G with U(1) coefficients is defined by:

Hn(G, U(1)) = Zn(G, U(1))/Bn(G, U(1)) = Ker δ(n)/Im δ(n−1) . (2.6)

The fact that the topological action does not depend on the choice of triangulation of
M follows from the cocycle condition δ(D)αD = 1. When no confusion is possible we
will drop the subscript n in αn and for convenience, we are going to denote by αn the
n-cohomology class and the cocycle used to represent it.

• Partition function. We denote by Z(G,M,αD) the gauge theory partition function
associated with the finite-group G and local action αD ∈ HD(G, U(1)) on M. We say the
theory is untwisted if αD is trivial and twisted otherwise. In the first case, we suppress the
symbol for the local action. The partition function Z(G,M,αD) on the lattice is given
by a summation over gauge equivalence classes (2.3) of flat gauge field configurations
(2.2) weighted by the topological action (2.4) and normalized by 1/|G|. This local lattice
definition can be recast in a global and manifestly topological invariant way as

Z(G,M,αD) =
1
|G|

∑

a∈Hom(π1(M),G)/G
〈a∗αD, [M]〉 , (2.7)

with [M] the fundamental class of M and αD ∈ HD(BG, U(1)). Above we used the fact
that there is a isomorphism between group cohomology HD(G, U(1)) and topological co-
homology HD(BG, U(1)) where BG is a classifying space for G (a space with π1(BG) = G
and πn(BG) = 1 for n > 1). In this setup, the summation is over principal G bundles
over M and the flat connection a defines a homotopy class of maps a : M→ BG which
we use to pull back αD to spacetime. We see that the theory can be viewed as a sigma
model with target space the classifying space BG [71].

The normalization factor 1/|G| is such that the partition function for untwisted G gauge
theory on S1 × SD−1 equals

Z(G, S1 × SD−1) =

¨

1 , D ≥ 3 ,

|G| , D = 2 ,
(2.8)

which is the dimension of the Hilbert space on SD−1. For D ≥ 3, the dimension is always
one since SD−1 is simply connected. For D = 2, the space is a circle, and the dimension of
Hilbert space is |G|. (Recall that we suppress the symbol for the topological action when
it is trivial.)

When G is a finite abelian group the theory can be generalized to higher-form G gauge
theory. In a p-form G gauge theory, the gauge field configurations are maps that assign
group elements to p-simplices, the flatness condition involves the boundary of (p+ 1)-
simplices, gauge transformations come from (p− 1)-simplices and the topological action
is classified by HD(BpG, U(1)) (BpG is a space with πp(BpG) = G and πn(BpG) = 0
otherwise). The partition function for untwisted p-form G gauge theory is proportional
to |H p(M, G)| which equals (2.7) for p = 1. This generalization does not work for
non-abelian G because of the flatness condition except the p = 0 case. When p = 0, a
gauge field configuration is a map g⃗ that assigns a gauge group element to every vertex
of M, g⃗(vi)≡ gi . By the flatness condition g[vi ,v j] = gi g

−1
j = 1 for all edges of M. One

finds that the map g⃗ assigns the same group element to every connected component of
M and therefore

Z0(G,M) = |G||π0(M)| . (2.9)

7

https://scipost.org
https://scipost.org/SciPostPhys.18.1.019


SciPost Phys. 18, 019 (2025)

Below we often assume that the spacetime manifold is connected in which case the above
is simply Z0(G,M) = |G|.

• Hilbert space. Consider canonical quantization on M = Rtime ×Mspace. The partition
function on S1 ×Mspace gives the dimension of the Hilbert space on Mspace and can be
computed explicitly using the lattice definition. If we view the partition function as a
summation over flat connections as in equation (2.7) then, for a gauge field with value g
in the time direction, the field configurations on Mspace that label the physical Hilbert
space on Mspace correspond to the flat connections such that the compactification of the
topological action αD ∈ HD(BG, U(1)) on S1 is trivial:

a⋆igαD = 0 mod 2πZ , ∀g ∈ G , (2.10)

where igα is the slant product (see e.g., Appendix A of [72]).3 The condition (2.10)
can also be viewed as the “equation of motion” for the field variation in the temporal
direction by the amount g.

In the case of vanishing αD this Hilbert space is spanned by basis vectors in one-to-one
correspondence with elements of Hom(π1(Mspace), G)/G where the quotient is the action
by G conjugation, see (2.3).

• Wilson lines. Wilson lines are one-dimensional extended operators labeled by represen-
tations of the gauge group. The Wilson line associated with the representation ρ inserted
on a loop γ is given by

Wρ(γ) = χρ(gγ) = Trρ(gγ) , (2.11)

where χρ : G → C is the character (trace) of the representation ρ and gγ ∈ G is the
holonomy around γ. The operator Wρ(γ) depends on the homotopy class of the cycle
γ. We recall that the fundamental group depends on a choice of basepoint. Assuming
that the spacetime manifold is connected nothing depends on this choice. However, the
presence of a basepoint implies that a loop γ homotopic to γ1 · γ2 cannot be viewed as
the disjoint union of γ1 and γ2. Therefore, in general Wρ(γ) ̸=Wρ(γ1)Wρ(γ2), even if
γ1 · γ2 is homotopic to γ. An important exception is when ρ is one-dimensional, which is
the case for all irreducible representations of abelian groups. We say that a Wilson line
Wρ has electric charge ρ.

If two Wilson lines are placed along the same loop they fuse according to the tensor
product of representations. This follows from the fact that χρ(g)χρ′(g) = χρ⊗ρ′(g).
Furthermore, representations of G are spanned by irreducible representations. Therefore,
given the Wilson lines in representation ρ and ρ′ we have:

Wρ(γ)Wρ′(γ) =Wρ⊗ρ′(γ) =
∑

ρi∈irreps

ciWρi
(γ) , (2.12)

with ci ∈ N the coefficient of ρi in the expansion of ρ ⊗ρ′ in irreducible representations.

• General invertible electric defects. General invertible electric defects are n-dimensional
operators labeled by elements of Hn(G, U(1)), the n-th group cohomology of G with

3Explicitly,

igαD(g1, · · · , gD−1) =αD(g, g1, · · · , gD−1)
(−1)D−1

αD(g1, . . . , gD−1)

×
D−2
∏

j=1

αD(g1, · · · , g j , (g1 · g2, · · · g j)
−1 · g · (g1 · g2, · · · g j), · · · , gD−1)

(−1)D−1+ j
.
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g−1 1

1

Wρ(γ)

1

1

1

g 1

1

×
Mg(Γ )

v4 v5

v2
v1 v3

v6

=
χρ(g)
χρ(1)

g−1 1

1

Wρ(γ′)

1

1

1

g 1

1

×
Mg(Γ )

v4 v5

v2
v1 v3

v6

Figure 1: Example of valid gauge field configuration on the vicinity of the magnetic
defect Mg insertion (indicated by an ×), and its linking action on the Wilson line Wρ

(shown in red). The magnetic insertion has linking number one with γ= (v2, v4, v5)
associated with the 2-simplex [v2, v4, v5] so a valid gauge field configuration should
satisfy g(v2,v5,v6) = g. Note, however, that the holonomy around the other 2-simplices
is trivial. Furthermore, the expectation value for the two insertions with the Wil-
son line Wρ along γ = (v1, v4, v6, v5, v3, v2, v1) which is linked with Γ , and along

γ′ = (v2, v5, v3, v2) which is unlinked with Γ are related by
χρ(g)
χρ(1)

.

U(1) coefficients (2.6). They are obtained by attaching a topological action along the
n-dimensional manifold they are defined on. The general invertible electric operator
associated with αn ∈ Hn(G, U(1)) inserted on the n-dimensional closed manifold Σn is
given by [28]:

Wαn
(Σn) =
∏

[vi1 ,...,vin+1
]∈Σn

αn(gi1 i2 . . . , gin in+1
)εi . (2.13)

For n = 1, we have H1(BG, U(1)) ∼= Hom(G, U(1)) and these operators reduces to a
Wilson line in a one-dimensional representation. For general n, they are submanifolds
decorated with topological action for the G gauge fields. Examples of these defects are
studied in [27,28,53,62,64,73].

If two general invertible electric defects are placed along the same n-dimensional closed
submanifold Σn they fuse according to the abelian group structure of Hn(G, U(1)). More
precisely, given αn,α′n ∈ Hn(G, U(1)) we have:

Wαn
(Σn)Wα′n

(Σn) =Wαn·α′n(Σn) . (2.14)

This is consistent with the property that fusing such domain walls is the same as first
stacking the SPT phases with G symmetry labeled by αn,α′n on the wall and then gauging
the G symmetry [28].

• Magnetic defects. Magnetic defects are codimension-two operators labeled by conjugacy
classes of G [74, 75]. The insertion of a magnetic defect associated to the conjugacy
class of some element g ∈ G on a closed connected (D − 2)-submanifold Γ modifies
the flatness condition (2.2) for the allowed gauge field configurations in the partition
function. Specifically, for every 2-simplex [vi , v j , vk] such that γ= (vi , v j , vk) links with
Γ the insertion of Mg(Γ ) restricts the holonomy gγ to be g instead of 1. Here, we view
Γ as being spanned by (D− 2)-simplices in the dual triangulation of M. Note that this
implies that the Wilson line Wρ has nontrivial linking with magnetic defects Mg given by
χρ(g)
χρ(1)

. In general, the operator Mg(Γ ) depends on the isotopy class of Γ . See Fig. 1 for
illustration. We say that a magnetic defect Mg has magnetic charge g.
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• Dyons. In D = 3 magnetic defects are also one-dimensional, therefore one can consider
more general one-dimensional operators with electric and magnetic charge. We will
focus on the case α = 0. This operators are called dyons and they are labeled by the tuple
([g],ρ) with [g] a non-trivial conjugacy class of G and ρ a non-trivial representation
of the group C(g) = {k ∈ G : kgk−1 = g}, the centralizer of a fixed element g ∈ [g]
(see e.g., [76]). Wilson lines are dyons with label ([1],ρ) since C(1)∼= G, and magnetic
defects are dyons with label ([g], 1) with 1 the trivial representation of C(g).

In D > 3 with α = 0, the magnetic defects have dimension (D − 2) > 1. Since on the
magnetic defect of conjugacy class [g] the gauge group is reduced to the centralizer C(g),
an analog of a “dyon” defect can be defined by decorating the magnetic defect with an
invertible electric defect for the unbroken gauge group C(g), labelled by a (D−2)-cocycle
β ∈ HD−2(C(g), U(1)).

When α ̸= 0, a general dyonic defect is given by decorating the magnetic defect with
(higher) projective representation. See e.g., [28].

• Fusion of magnetic defects in D = 3. When the G gauge theory has trivial topological
action the magnetic defects obey the following fusion rules. Since the magnetic defect
Mg reduces the gauge group G to the centralizer subgroup C(g), the Wilson line in
irreducible representation ρ in the presence of the magnetic defect decomposes into
∑

i Wρi
for ρ =
⊕

i ρi under the stabilizer subgroup C(g). Thus

Wρ ×Mg =
∑

i

Wρi
Mg , (2.15)

where the right-hand side above should be viewed as sum of dyons, and the sum over i
is as in the decomposition of ρ above.

Consider fusing magnetic defects Mm, Mm̄. From the above discussion, this should give
the condensation defect of Wilson lines that can terminate on the magnetic defect. Denote
Rm to be the set of irreducible representations of G whose decomposition under the
stabilizer subgroup C(m) contains the trivial representation. Then

Mm ×Mm̄ =
1
|G|

∑

g∈G

Mmgm̄g−1

∑

r∈Rm

drWρr
, (2.16)

where di is the dimension of the representation ρi , and the sum is over the representations
in Rm. On the right-hand side, we use the property that multiplying two conjugacy classes
in general get multiple fusion outcomes. The coefficients on the right-hand side of (2.16)
can be computed using the method in [77,78]. Let us denote the right-hand side by Am,
we want to find the coefficient of Wρr

in Am. Consider fusing Am with W̄ρr
on SD−1× S1

with the lines wrapping S1, the partition function computes Hom(Am × W̄ρr
, 1) which is

the desired coefficient. On the other hand, view Am as an empty cylindrical tube, the
configuration is topologically equivalent to BD−1×S1 with punctured ball BD−1 by Wilson
line Wρr

wrapping S1, and thus the coefficient is dim H(BD−1,ρr), which equals to the
dimension of the space of operators living at the intersection of the Wilson line and the
boundary, i.e. the dimension of the representation.

For example, if m is in the center of G, the stabilizer C(m) = G is the entire group, then
Rm only contains the trivial representation. The fusion of the magnetic defects reduces
to Mm ×Mm′ = Mmm′ .

When α ̸= 0, magnetic defects carry additional projective representations, which modify
the fusion rules as discussed in [28].
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• Hamiltonian formalism (quantum double model). We can also consider a Hamiltonian
formalism with continuous time and discrete space. One possible Hamiltonian model
is the quantum double (or its twisted version when the theory has a topological action)
discussed in [50,79,80]. This theory should be viewed as an ultra-violet extension of
topological finite-group gauge theory discussed above. Specifically, this Hamiltonian
model has excitations with nonzero energy, and its Hilbert space is the tensor product
of local Hilbert spaces C[G] on each edge with basis {|g〉 : g ∈ G}. At low energy,
with particular couplings, the ground states realize the Hilbert space of the topological
finite-group gauge theory.

More concretely, the topological G gauge theory is realized in the low energy ground states
by imposing an energy cost for the configuration that violates the Gauss law ∇ · E = 0
for electric field E. To realize the flatness condition on the gauge fields, we also need to
impose an energy cost for the fluxes. Thus, the Hamiltonian has the form

H = −
∑

Av −
∑

f

B f , (2.17)

where Av is the energy cost for violation of Gauss law at vertex v, and B f is the energy
cost for fluxes on face f . The explicit form of Av , B f are given in [50,79,80].

3 Lattice construction of topological operators

This section will discuss topological defects in finite-group gauge theory. We will focus on
codimension-one topological defects. They correspond to an ordinary symmetry of the theory
when the defects obey group-law fusion. We will first review the gapped boundaries of finite-
group gauge theories and explain how to realize them on the lattice. Then we will present a
lattice construction of the domain walls and use this construction to derive their properties,
such as fusion algebra and how they transform other operators. Lastly, we will show how the
results generalize to topological defects of higher codimension.

3.1 Codimension-one topological operators on the lattice

In this section, we will first review and define on the lattice the gapped boundaries of finite-
group gauge theories, which are related to domain walls via the folding trick. Then we will
present a lattice construction of the domain walls using this classification.

3.1.1 Gapped boundaries on the lattice

Gapped boundaries in untwisted finite-group G gauge theory can be constructed from:

• Subgroup K ≤ G.

• Topological action α ∈ HD−1(K , U(1)).

Given the data (K ,α), one constructs the gapped boundary BK ,α by restricting the gauge
fields and gauge transformations on the boundary to be elements of K and one decorates the
boundary with the corresponding topological action α ∈ HD−1(K , U(1)) as in (2.13). The above
construction is compatible and generalizes the Beigi-Shor-Whalen classification [76] of gapped
boundaries in the quantum double model in D = 3.
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3.1.2 Domain walls on the lattice from the folding trick

Gapped domain walls can be obtained from gapped boundaries by the folding trick. In particular,
we should be able to give a constructive definition of a codimension-one domain wall of G
gauge theory from the data that specifies a gapped boundary of G × G gauge theory, i.e., a
subgroup H ≤ G × G and a topological action α ∈ HD−1(H, U(1)). In this section, we outline
this construction.

Given a subgroup H ≤ G × G and a codimension-one connected, closed and orientable
submanifold Σ, we define the domain wall, DH(Σ) by restricting the gauge group elements of
the connection along Σ to lie in the subgroup H and by properly gluing the H gauge group
elements of Σ with the G gauge group elements of the rest of spacetime. We can further
decorate the domain wall with a topological action α ∈ HD−1(H, U(1)) which gives the domain
wall DH,α(Σ). In more detail, DH,α(Σ) is defined as:

• Gauge field configurations: Each edge on Σ has group elements (hL , hR) ∈ H ≤ G × G
instead of g ∈ G (where L and R is defined globally with respect to the orientation of the
normal bundle NΣ). Because of this modification, one needs to specify the appropriate
holonomy for 2-simplices that have edges both in and outside Σ, i.e., we need to define
the flatness condition of (2.2) for such 2-simplices. The holonomy picks a hL (or hR)
contribution if the edges comes from the left (or right) of Σ. See Fig. 2 for an example
of a valid flat gauge field configuration.

• Gauge transformations: Gauge transformation on the vertices of Σ by (kL , kR) ∈ H
transforms the group elements on the edges that meet the vertex:

– If the edge is on Σ and pointing towards the vertex, the group element (hL , hR) on
the edge transforms into (hL · k−1

L , hR · k−1
R ). If the edge is pointing away from the

vertex, the group element transforms to (kL · hL , kR · hR).

– If the edge is outside Σ with group element gL ∈ G and joins Σ from the left, the
group element transforms into gL · k−1

L . If it leaves Σ to the left the group element
transforms into kL · gL .

– If the edge is outside Σ with group element gR ∈ G and joins Σ from the right, the
group element transforms into gR · k−1

R . If it leaves Σ to the right the group element
transforms into kR · gR.

See Fig. 3 for illustration.

• Topological action: The topological action α ∈ HD−1(H, U(1)) is evaluated for all (D−1)-
simplices of Σ. Whenever α is trivial we suppress it from our notation for the domain
wall. A domain wall with trivial topological action is said to be untwisted and twisted
otherwise.

However, the holonomy for a contractible path that crosses Σ is not trivial in general, for
example, the path γ = (v1, v3, v2, v4, v1) has holonomy: gγ = gL · hR · h−1

L · g
−1
L which is not 1 in

general. Notice that depending on the subgroup H, the domain wall can source holonomy for
loops that pierce the wall. For example, in Fig. 2 one can check that the holonomy along the
paths (v1, v3, v4) and (v2, v3, v4) are trivial. However, the holonomy for a contractible path that
crosses Σ is not trivial in general, for example, the path γ= (v1, v3, v2, v4, v1) has holonomy:
gγ = gL · hR · h−1

L · g
−1
L which is not 1 in general. This feature is crucial for constructing the

above domain walls as condensations where the non-trivial holonomy is generated by magnetic
defect insertions [100].
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DH(Σ)

gL gR

gRhRgLhL

(hL , hR)

v3
v1 v2

v4

Figure 2: Example of valid flat gauge field configuration in a local region of DH(Σ).
Note that the holonomies of (v1, v3, v4, v1) and (v2, v3, v4, v2) are trivial, but the holon-
omy of (v1, v3, v2, v4, v1) is not trivial in general.

DH(Σ)

gLk−1
L gRk−1

R

gRhRgLhL

v3
v1 v2

v4

(kLhL , kRhR)

Figure 3: Example of equivalent gauge field configuration for the same local region.
They are related by a gauge transformation with parameter given by (kL , kR) ∈ H on
v3 and 1 ∈ H on v1, v2, v4.

Because of the modification of gauge transformations along Σ, the holonomy for large loops
that pierce the wall do not in general change by conjugation under gauge transformations. This
means that a Wilson line inserted in such a loop is not, in general, gauge invariant. Conversely,
to have a magnetic defect ending or crossing the domain wall one would need to fix the
holonomy for a simplex in Σ to be the conjugacy class of the magnetic operator, but this might
not be possible depending on H. We are going to see that these two features can be used to
define the action of untwisted domain walls in both operators.

It is straightforward to see how the above definition can be recast in the Hamiltonian
formalism of the quantum double model described around equation (2.17). For instance, to
define a domain wall extended along time in M= Rtime ×Mspace, one should change the total
Hilbert space on Mspace by having a local Hilbert space C[H] with H ≤ G × G for edges on
Σspace (a codimension-one submanifold of Mspace). One should then change accordingly the
definition of the Av and B f terms of the Hamiltonian for vertices along Σspace and faces with
edges contained within Σspace.

Table 1: Above KL , KR, K are normal subgroups of G and φ ∈ Aut(G). In the first row,
the topological action is evaluated on the right entry of K(φ). More formally, as a topo-
logical action of HD−1(K(φ), U(1)) it is R∗α, i.e., the pullback of α ∈ HD−1(K , U(1))
by R : K(φ)→ K defined by R(φ · k, k) = k.

Symbol Subgroup of G × G Local action
DK(φ),α K(φ) ≡ {(φ · k, k) : k ∈ K} α ∈ HD−1(K , U(1))

DKL×KR,αL×αR
KL × KR αL ×αR ∈ HD−1(KL × KR, U(1))
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We will focus on the domain walls corresponding to the subgroups in Table 1. Our choice
for this particular subset is that they make a closed algebra under fusion. In Section 3.2.4 we
are also going to work out examples of domain walls associated with the subgroup H = G × G,
with a non-factorized local action, i.e., a local action α ∈ HD−1(G × G, U(1)) which is not of
the form αL ×αR with αL ,αR ∈ HD−1(G, U(1)). In particular, the domain wall that implements
electric-magnetic duality in Z2 gauge theory in D = 3 is precisely the domain wall DZ2×Z2,α
with the non-factorized local action α ∈ H2(Z2 ×Z2, U(1)) = Z2. More generally, in Section
3.3.3 we are going to show that defects of this form can mix electric and magnetic operators
and, in this sense, generalize the electric-magnetic duality of abelian gauge theories.

3.1.3 Orientation-reversal of domain walls

The definition of the domain wall DH,α(Σ) depends on the orientation of the manifold Σ.
In an orientable ambient spacetime (which we assume) an orientation of Σ is equivalent to an
orientation of the normal bundle NΣ. Orientation-reversal of Σ flips the normal vector and
exchanges the left and right of the domain wall. Thus the domain wall associated to the subgroup
H becomes the image of H under the automorphism of G × G defined by T (gL , gR) = (gR, gL).
More precisely, let DH,α be the orientation-reversal of DH,α. Then DH,α = DT (H),T ∗α where
T (H) denotes the image of H ≤ G × G under T and T ∗α is the pullback of α ∈ HD−1(H, U(1))
by T : T (H)→ H (here we used that T = T−1). In particular, for the two families of subgroups
of Table 1 we have:

DK(φ),α =D(φ(K))(φ−1),φ−1∗α , DKL×KR,αL×αR
=DKR×KL ,αR×αR

. (3.1)

Note that reversing the orientation of Σ (barred defect above) is the same as taking the CPT
conjugate. For invertible operators, this barred operator is thus identified with the inverse and:

D×D = 1 (invertible symmetries), (3.2)

where the right-hand side denotes the identity operator. Meanwhile, for the more general
non-invertible symmetries discussed here, the fusion of D with its CPT conjugate D is not in
general the identity, but rather is a condensation defect [81] and contains the identity as well
as a coherent sum of other operators.4

3.2 Fusion rules of domain walls and action on gapped boundaries

In this section, we use our lattice constructions to compute the fusion of domain walls and the
action of domain walls on gapped boundaries.

Fusion of domain walls Given two domain walls, DH,α,DH ′,α′ associated with the subgroups
H, H ′ ≤ G × G and topological actions α ∈ HD−1(H, U(1)),α′ ∈ HD−1(H ′, U(1)) defined on
Σ, their fusion is defined by placing them “close” together and noticing that one can rewrite
the insertion as a sum of other domain walls. The coefficients of the summation are partition
functions of topological quantum field theories. The geometry of the two domain walls close
together is that of Σ× [0, 1] with DH,α defined on Σ× 0 and DH ′,α′ on Σ× 1. In the following
computations, we are going to use a cellular decomposition of Σ× [0,1] obtained from two
copies of a given triangulation of Σ by joining equivalent vertices of the two copies. See Fig. 4
for illustration.

The fusion algebra of the two classes of the domain walls presented in Table 1 is generated
by the domain walls presented in Table 2.

4We note that the condensation defect can consist of operators of the same dimension as the condensation defect.
In such a case, the condensation defect can act on local operators because the operators that constitute the “mesh”
in the condensation defect can act on local operators. For instance, the Kramers-Wannier duality σ in 1+1d obeys
the fusion rule σ×σ = 1+ψ in the continuum where σ̄ = σ, and 1+ψ is a condensation of ψ, which is the Z2

0-form symmetry that acts on local operators.
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g1 ∈ G

g2 ∈ G

(hL , hR) ∈ H (h′L , h′R) ∈ H ′

v1

v2

v′1

v′2

DH,α(Σ× 0) DH ′,α′(Σ× 1)

Figure 4: Local region of Σ in the presence of DH,α(Σ)×DH ′,α′(Σ). We use a cellular
decomposition of Σ× [0, 1] obtained from two copies of a given triangulation of Σ by
joining equivalent vertices of the two copies.

Table 2: Generators of the domain walls presented in Table 1. Above, K Ã G and
φ ∈ Aut(G).

Name Notation Subgroup of G × G Local action

Diagonal DK(id),α K(id) = {(k, k) : k ∈ K} α ∈ HD−1(K , U(1))
Automorphism DG(φ) G(φ) = {(φ · g, g) : g ∈ G} Trivial

Magnetic DG×G G × G Trivial

The fusion of any set of domain walls within the two classes of Table 1 can be computed
using the fusion rules (derived below):

DG(φ) ×DG(φ′) =DG(φ◦φ′) , (3.3)

DG(φ) ×DG×G =DG×G ×DG(φ) =DG×G , (3.4)

DG(φ) ×DK(id),α =DK(φ),α , (3.5)

DK(id),α ×DG(φ) =DG(φ) ×Dφ−1(K),φ∗α =D(φ−1(K))(φ),φ∗α , (3.6)

DK(id),α ×DK ′(id),α′ =
|G|
|K · K ′|

D(K∩K ′)(id),α·α′ , (3.7)

DK(id)L ,αL
×DG×G ×DK(id)R ,αR

=DKL×KR,αL×αR
, (3.8)

DG×G ×DK(id),α ×DG×G = Z(K ,α)DG×G , (3.9)

with φ ◦φ′ the automorphism composition of φ,φ′ ∈ Aut(G); φ−1(K) the image of K under
φ−1; φ∗α the pullback of α : K D−1→ U by φ : φ−1(K)→ K; α ·α′|K∩K ′ ∈ HD−1(K ∩ K ′, U(1));
|G|/|K · K ′| the 0-form partition function of G/K · K ′ gauge theory on Σ, (see the discussion
around (2.9)); and Z(K ,α) the partition function of K gauge theory twisted by α on Σ.

As an example, the second class of domain walls presented in Table 1 (the factorized domain
walls) is generated by the diagonal and the magnetic domain walls. The fusion of factorized
domain walls can be derived from (3.7), (3.8) and (3.9) using associativity and is:

DKL×KR,αL×αR
×DK ′L×K ′R,α′L×α

′
R
=
|G|
|KR · K ′L|

Z(KR ∩ K ′L ,αR ·α′L)DKL×K ′R,αL×α′R . (3.10)
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g1 ∈ G

g2 ∈ G

(hL , hR) ∈ H k ∈ K

v1

v2

v′1

v′2

DH,α(∂M× 0) BK ,β(∂M× 1)

Figure 5: Local region of the boundary ∂M in the presence of DH,α(∂M)×BK ,β (∂M).
We use a cellular decomposition of ∂M× [0, 1] obtained from two copies of a given
triangulation of ∂M by joining equivalent vertices of the two copies.

Note that the coefficient is again a partition function on Σ: that of a KR ∩ K ′L gauge theory
twisted by αR ·α′L decoupled from an untwisted G/KR · K ′L zero-form gauge theory. If instead
the domain walls were decorated with non-factorized topological actions α and α′, the fusion
coefficient would depend on the topological actions in a non-trivial way. In particular, the result
would not generally be uniform in the spacetime dimension. We will give examples of this in
Section 3.2.4.

Action of domain walls on gapped boundaries Similarly, given a domain wall DH,α and a
gapped boundary BK ,β associated with the subgroups H ≤ G×G, K ≤ G and topological actions
α ∈ HD−1(H, U(1)), β ∈ HD−1(K , U(1)), one can take the domain wall to the boundary which
will act on the gapped boundary generating a sum of gapped boundaries. The coefficients of
the summation are partition functions of topological quantum field theories. The geometry
of the domain wall action on the gapped boundary is that of ∂M× [0,1] with DH,α defined
along Σ= Σ× 0 and BK ,β along Σ× 1. Similarly to the fusion of domain walls we will use a
cellular decomposition of ∂M× [0,1] obtained from two copies of a given triangulation of
∂M by joining equivalent vertices of the two copies. See Fig. 5 for illustration.

The above definition gives the action of domain walls on gapped boundaries “from left to
right”. The action “from right to left” is the same as the action (“from left to right”) of the
orientation-reversal of the domain wall in consideration.

The domain walls of Table 2 have the following action on the gapped boundaries:

DG(φ) ×BK ,α = Bφ(K),φ−1∗α , (3.11)

DK(id),α ×BK ′,α′ =
|G|
|K · K ′|

BK∩K ′,α·α′ , (3.12)

DG×G ×BK ,α = Z(K ,α)BG , (3.13)

with φ(K) the image of K ≤ G under φ ∈ Aut(G); φ−1∗α the pullback of α by φ−1 : φ(K)→ K;
α ·α′|K∩K ′ ∈ HD−1(K ∩ K ′, U(1)); and Z(K ,α) the partition function of K gauge theory twisted
by α on ∂M.
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g1

g2

(φ · g ′, g ′) (φ′ · g, g)

v1

v2

v′1

v′2

DG(φ) DG(φ′)

=

1

1

(φ ◦φ′ · g,φ′ · g) (φ′ · g, g)

v1

v2

v′1

v′2

DG(φ) DG(φ′)

=
(φ ◦φ′ · g, g)

v1

v2

DG(φ◦φ′)

Figure 6: Derivation of the automorphism fusion rule (3.3). From the gauge transfor-
mation with image h⃗(vi) = (φ ·g−1

i , g−1
i ) ∈ G(φ) for all vi in DG(φ) we go from a generic

gauge field configuration to temporal gauge in the second figure. By the flatness con-
dition, the group elements on the right and left of each domain wall are equal. Gauge
transformations with h⃗(vi) = (φ ·φ′ · h,φ′ · h) ∈ G(φ) and h⃗(v′i ) = (φ

′ · h, h) ∈ G(φ
′)

preserve the temporal gauge and make the gauge transformations of DG(φ◦φ′) .

3.2.1 Automorphism domain walls

In this section we derive the fusion rules (3.3) and (3.4) and the action on boundary (3.11):

DG(φ) ×DG(φ′) =DG(φ◦φ′) , (3.14)

DG(φ) ×DG×G =DG×G ×DG(φ) =DG×G , (3.15)

DG(φ) ×BK ,α = Bφ(K),φ−1∗α . (3.16)

involving the domain walls with automorphism subgroups G(φ) = {(φ · g, g) : g ∈ G} ≤ G × G
with φ ∈ Aut(G).

We start with the first which we call the automorphism fusion rule. Consider the cellular
decomposition of Σ× [0,1] illustrated in Fig. 4. From the gauge transformation with image
h⃗(vi) = (φ · g−1

i , g−1
i ) ∈ G(φ) for all vi in DG(φ) we go from a generic gauge field configuration

to one with perpendicular edges equal to the identity. We call this gauging fixing condition
temporal gauge. By the flatness condition explained and illustrated in Fig. 2, the holonomy
of the path γ = (v1, v2, v′2, v′1, v1) should be trivial, which shows that the group elements on
the right and left of each domain wall are equal. Gauge transformations with h⃗(vi) = h⃗(v′i )
preserve the temporal gauge and correspond to the gauge transformations of DG(φ◦φ′) . This
shows that performing the path integral with the domain walls DG(φ) and DG(φ′) close together
is equivalent to performing the path integral with the domain wall DG(φ◦φ′) instead. See Fig. 6
for a summary and illustration.

The DG(φ) defect is associated with an invertible symmetry of discrete gauge theories and
fuses according to the automorphism composition. In particular:

DG(φ) ×DG(φ) =DG(φ) ×DG(φ−1) =DG(φ◦φ−1) =DG(id) = 1 , (3.17)

where we used (3.1) and (3.3). As we are going to see in Section 3.3, the action of the
domain wall DG(φ) on other operators is insensitive to the action of inner automorphisms
(which implement global gauge transformations). If we denote by Aut(G) the group of all
automorphisms of G and by Inn(G) the subgroup of inner automorphisms, the physical data is
the projection of φ ∈ Aut(G) to the quotient Out(G) = Aut(G)/ Inn(G) of outer automorphisms.
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Therefore, generically, the ordinary symmetry of discrete gauge theories contains the subgroup
Out(G).

The fusion rule (3.4) and the action on gapped boundary (3.11) can be derived following
the same method. The derivations are summarized in Fig. 7 and Fig. 8. The fact that one gets
the pullback of α : K D−1 → G by φ−1 : φ(K)→ K follows from the fact that the topological
boundary is evaluated on K group elements, as shown in Fig. 8.

g1

g2

(φ · gR, gR)(gL , g)

v1

v2

v′1

v′2

DG(φ)DG×G

=

1

1

(gL ,φ · gR) (φ · gR, gR)

v1

v2

v′1

v′2

DG(φ)DG×G

=
(gL , gR)

v1

v2

DG×G

Figure 7: Derivation of the fusion rule (3.4). From the gauge transformation with
image h⃗(vi) = (1, g−1

i ) ∈ G × G for all vi in DG×G we go from a generic gauge field
configuration to temporal gauge in the second figure. By the flatness condition,
the group elements on the right and left of each domain wall are equal. Gauge
transformations with h⃗(vi) = (hL ,φ · hR) ∈ G × G and h⃗(v′i ) = (φ · hR, hR) ∈ G(φ)

preserve the temporal gauge and make the gauge transformations of the resulting
DG×G .

g1

g2

(φ · g, g) k

v1

v2

v′1

v′2

DG(φ) BK ,α

=

1

1

(φ · k, k) k

v1

v2

v′1

v′2

DG(φ) BK ,α

=
φ · k

v1

v2

Bφ(K),φ−1∗α

Figure 8: Derivation of the action on boundary (3.11). From the gauge transformation
with image h⃗(vi) = (φ · g−1

i , g−1
i ) ∈ G(φ) for all vi in DG(φ) we go from a generic gauge

field configuration to temporal gauge in the second figure. By the flatness condition,
the group elements on the right of the domain wall and on the boundary are equal.
Gauge transformations with h⃗(vi) = (φ · h, h) ∈ G(φ) and h⃗(v′i ) = h ∈ K preserve
the temporal gauge and make the gauge transformations of the resulting boundary
Bφ(K),φ−1∗α. Note that in the intermediate step the topological action is still evaluated
on k group elements, so the fusion outcome has the pullback of α by φ−1.
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3.2.2 Diagonal domain walls

In this section we derive the fusion rules (3.5), (3.6) and (3.7) and the action on boundaries
(3.12):

DG(φ) ×DK(id),α =DK(φ),α , (3.18)

DK(id),α ×DG(φ) =DG(φ) ×Dφ−1(K),φ∗α =D(φ−1(K))(φ),φ∗α , (3.19)

DK(id),α ×DK ′(id),α′ =
|G|
|K · K ′|

D(K∩K ′)(id),α·α′ , (3.20)

DK(id),α ×BK ′,α′ =
|G|
|K · K ′|

BK∩K ′,α·α′ , (3.21)

associated to the automorphism subgroup defined in the previous section and the diagonal
subgroups K(id) = {(k, k) : k ∈ K} with K Ã G. The topological actions are elements of
α ∈ HD−1(K , U(1)), α′ ∈ HD−1(K ′, U(1)) and α ·α′|K∩K ′ ∈ HD−1(K ∩ K ′, U(1)).

The derivation of the first two fusion rules (3.5) and (3.6) is similar to what we did in the
previous section and is summarized and illustrated in Fig. 9 and Fig. 10. We remind that we
defined the domain wall DK(φ),α by having the topological action α ∈ HD−1(K , U(1)) evaluated
on the right entry, see Table (1). This convention explains the pullback when we invert the
order of multiplication.

The derivation of (3.7), which we call the diagonal fusion rule, has a novelty. Similarly
from what we had in the automorphism derivation we find that the gauge field configuration in
Σ×0 will give non-zero result only if the same gauge field configuration appears on Σ×1. This
can happen just if the group elements belongs to ∈ K ∩ K ′. In this case, however, one needs to
add the fusion coefficient |G|/|K · K ′| that comes from summing the degrees of freedom that
cannot be removed from gauge transformations. As a simple example, in the setup we are
working in, we can derive the prefactor for the particular case D1 ×D1 = |G|D1. By using the
same cellular decomposition illustrated in Fig. 4, we see that we cannot go to the temporal
gauge because the gauge transformations of D1 are also restricted to the identity subgroup.

g1

g2

(φ · g, g) (k, k)

v1

v2

v′1

v′2

DG(φ) DK(id),α

=

1

1

(φ · k, k) (k, k)

v1

v2

v′1

v′2

DG(φ) DK(id),α

=
(φ · k, k)

v1

v2

DK(φ),α

Figure 9: Derivation of the fusion rule (3.5). From the gauge transformation with
parameter h⃗(vi) = (φ · g−1

i , g−1
i ) ∈ G(φ) for all vi in DG(φ) we go from a generic gauge

field configuration to temporal gauge in the second figure. By the flatness condition,
the group elements on the right and left of each domain wall are equal. Gauge
transformations with h⃗(vi) = (φ · h, h) ∈ G(φ) and h⃗(v′i ) = (h, h) ∈ K(id) preserve the
temporal gauge and make the gauge transformations of the resulting DK(φ),α. The
topological action is evaluated on K group elements in all steps so we do not have
the pullback of α by φ.
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g1

g2

(φ · g, g)(k, k)

v1

v2

v′1

v′2

DG(φ)DK(id),α

=

1

1

(k,φ−1 · k)(k, k)

v1

v2

v′1

v′2

DG(φ)DK(id),α

=
(k,φ−1 · k)

v1

v2

D(φ−1(K))(φ),φ∗α

Figure 10: Derivation of the fusion rule (3.6). From the gauge transformation with
parameter h⃗(v′i ) = (gi ,φ

−1 · gi) ∈ G(φ) for all vi in DG(φ) we go from a generic gauge
field configuration to temporal gauge in the second figure. By the flatness condition,
the group elements on the right and left of each domain wall are equal. Gauge
transformations with h⃗(v′i ) = (h,φ−1 ·h) ∈ G(φ) and h⃗(vi) = (h, h) ∈ K(id) preserve the
temporal gauge and make the gauge transformations of the resulting D(φ−1(K))(φ),φ∗α.
The topological action is evaluated on K group elements in the intermediate step so
we need the pullback of α by φ : φ−1(K)→ K .

But by the flatness condition, the group elements on the perpendicular edges should be equal.
By summing over all these configurations we get the factor of |G|. See Fig. 11 for illustration.

The general case can be argued similarly, the difference is that any element g in the
middle that can be written in the form kk′ with k ∈ K and k′ ∈ K ′ can be trivialized by gauge
transformations that are not part of the K ∩ K ′ gauge transformations. This means, that the
pre-factor is |G|/|K · K ′| instead of |G|. Note that the fusion rule is consistent with the fact that
DG(id) = 1. Note that the prefactor is an integer because for normal subgroups K · K ′ is also a
subgroup and by Lagrange’s theorem it divides the order of G.

∑

g∈G

g

g

(1, 1) (1,1)

D1 D1

v1

v2

v′1

v′2

= |G|
(1, 1)

v1

v2

D1

Figure 11: Derivation of the fusion rule D1×D1 = |G|D1. The red dots highlights the
source of gauge transformations that are elements of 1≤ G × G and cannot change
the holonomy along the perpendicular edge. By the flatness condition, the group
elements on the perpendicular edges are equal. Performing the summation of the
middle horizontal edge gives rise to the |G| factor.
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If the two domain walls DK(id) ,DK ′(id) are decorated with additional topological term
α ∈ HD−1(K , U(1)),α′ ∈ HD−1(K ′, U(1)), their fusion result has decoration given by attaching
α ·α′|K∩K ′ ∈ HD−1(K ∩ K ′, U(1)):

DK(id),α(Σ)×DK ′(id),α′(Σ) =
|G|
|K · K ′|

D(K∩K ′)(id),α·α′(Σ) . (3.22)

This is more easily seen by thinking of DK(id),α(Σ) as the product of DK(id)(Σ) and the invertible
electric defect Wα(Σ) defined in (2.13). The action of DK(id),α on gapped boundaries (3.12)
can be derived in a similar way.

Let us make a few remarks:

• By the lattice definition DG(id) = 1 is the identity defect and DG(id),α(Σ) is obtained by
decorating Σ with the topological action α ∈ HD−1(G, U(1)), which is the codimension-
one invertible electric defect defined in (2.13). One can see that the fusion of these defects
is the group multiplication in HD−1(G, U(1)). This is consistent with the property that
fusing such domain walls is the same as first stacking the SPT phases with G symmetry
labelled by α,α′ on the wall and then gauging the G symmetry [28]. Generically, the
full ordinary symmetry of discrete gauge theory is generated by DG(φ) and DG(id),α which
form the group:

Out(G)⋉HD−1(G, U(1)) . (3.23)

In D = 3, Wilson lines and magnetic defects are both lines, so there exist other ordinary
symmetries that consistently permute the Wilson lines and magnetic defects. Electric-
magnetic duality symmetry in Z2 is such an example. It corresponds to the domain wall
associated with the subgroup H = Z2 ×Z2 ≤ Z2 ×Z2 and the non-factorized topological
action α2 ∈ H2(Z2 ×Z2, U(1)) = Z2.

• The fusion of diagonal domain walls is commutative. In Section 3.4, we will generalize
them to higher-codimension topological defects where the fusion rules must be com-
mutative [82]. This is to be contrasted with the factorized and automorphism domain
walls, which obey a non-commutative algebra, and therefore cannot be generalized to
higher-codimension.

• As we are going to see in Section 4, the fusion coefficient can be interpreted as the
partition function of Stueckelberg scalars, which is equal to the 0-form partition function
of untwisted G/K · K ′ gauge theory, (2.9). In particular, the coefficient is sensitive to the
topology of Σ, more precisely, to π0(Σ), which here we have assumed to be 1.

3.2.3 Factorized domain walls

In this section we first derive the elementary fusion rules (3.8) and (3.9), and the action on
boundaries (3.13):

DK(id)L ,αL
×DG×G ×DK(id)R ,αR

=DKL×KR,αL×αR
, (3.24)

DG×G ×DK(id),αR
×DG×G = Z(K ,α)DG×G , (3.25)

DG×G ×BK ,α = Z(K ,α)BG , (3.26)

with Z(K ,α) the partition function of K gauge theory twisted by α ∈ HD−1(K , U(1)) on Σ.
Then, we use these results to derive (3.10).

The factorized domain walls are generated by the diagonal domain walls and DG×G from
the first equation, (3.8). To derive this fusion we proceed similarly to what we did before by
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g1

g2

(kL , kL) (gL , gR)

g ′1

g ′2

(kR, kR)

DK(id)R ,αR
DK(id)L ,αL

DG×G

v1

v2

v′1

v′2

v′′1

v′′2

=

1

1

(kL , kL) (kL , kR)

1

1

(kR, kR)

DK(id)R ,αR
DK(id)L ,αL

DG×G

v1

v2

v′1

v′2

v′′1

v′′2

=
(kL , kR)

v1

v2

DKL×KR,αL×αR

Figure 12: Derivation of the factorized fusion rule (3.8). The first two figures are
related by a gauge transformation with h⃗(v′i ) = (gi , g ′−1

i ) ∈ G × G for all v′i on
DG×G . By the flatness condition the vertical edge on the middle has group elements
(kL , kR). Gauge transformations with h⃗(vi) = (hL , hL) ∈ K(id)L , h⃗(v′i ) = (hL , hR) ∈ G×G

and h⃗(v′′i ) = (hR, hR) ∈ K(id)R preserve the temporal gauge and make the gauge
transformations of DKL×KR

. The topological actions are carried along the way.

using the cellular decomposition of Fig. 4. First, we perform gauge transformations on the
vertices of DG×G to get to temporal gauge; then we use the flatness condition to see that the
elements on the middle layer are (kL , kR) ∈ KL × KR; and finally we note that the remaining
gauge transformations are elements of KL × KR. The topological actions are carried along the
way. See Fig. 12 for an illustration.

Now, we derive the second fusion rule, (3.9). The result follows from noticing that the
DG×G domain wall cuts the manifold into two disconnected and independent components.
Therefore, one can perform the partition summation for the disconnected part in the middle.
This gives the Z(K ,Σ,α) partition function because the middle layer is topologically Σ× [0, 1]
and retracts to Σ with gauge group elements in K and a topological action α ∈ HD−1(K , U(1)).
Conversely, we could follow the same steps as before which are summarized in Fig. 13.

g1

g2

(gL , g ′R) (k, k)

g ′1

g ′2

(g ′L , gR)

DG×G DG×GDK(id),α

v1

v2

v′1

v′2

v′′1

v′′2

=

1

1

(gL , k) (k, k)

1

1

(k, gR)

DG×G DG×GDK(id),α

v1

v2

v′1

v′2

v′′1

v′′2

= Z(K ,α)
(gL , gR)

v1

v2

DG×G

Figure 13: Derivation of the factorized fusion rule (3.9). The first two fig-
ures are related by a gauge transformation with h⃗(vi) = (1, g−1

i ) ∈ G × G and
h⃗(v′′i ) = (g

′
2, 1) ∈ G×G for all vertices vi and v′′i in the two DG×G . Gauge transforma-

tions with h⃗(vi) = (1, h) ∈ G×G, h⃗(v′i ) = (h, h) ∈ K(id) and h⃗(v′′i ) = (h, 1) ∈ G×G make
the gauge transformations of the decoupled partition function obtained by summing
over k. Gauge transformations with h⃗(vi) = (hL , 1) ∈ G × G, h⃗(v′′i ) = (1, hR) ∈ G × G
preserve the temporal gauge and make the gauge transformations of the resulting
DG×G .
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g1

g2

(gL , gR) k

v1

v2

v′1

v′2

DG×G BK ,α

=

1

1

(gL , k) k

v1

v2

v′1

v′2

DG×G BK ,α

= Z(K ,α)
gL

v1

v2

BG

Figure 14: Derivation of the action on boundary (3.11). From the gauge transfor-
mation with image h⃗(vi) = (1, g−1

i ) ∈ G × G for all vi in DG×G we go from a generic
gauge field configuration to temporal gauge in the second figure. By the flatness
condition the group elements on the right of the domain wall and on the boundary are
equal. Gauge transformations with h⃗(vi) = (1, h) ∈ G × G and h⃗(v′i ) = h ∈ K preserve
the temporal gauge and make the gauge transformations of the decoupled partition
function Z(K ,α). Gauge transformations with h⃗(vi) = (h, 1) ∈ G × G make the gauge
transformations of the resulting boundary BG .

The action of DG×G on gapped boundaries (3.13) can be derived following the same method.
The derivation is summarized in Fig. 14.

The fusion of factorized domain walls (3.10) can be obtained from (3.7), (3.8) and (3.9)
using associativity. For the case with trivial topological action, we have:

DKL×KR
×DK ′L×K ′R

=DK(id)L
×DG×G ×DK(id)R

×DK ′(id)L
×DG×G ×DK(′id)R

=
|G|
|KL · KR|

DK(id)L
×DG×G ×D(KR∩K ′L)

(id) ×DG×G ×DK ′(id)R

=
|G|
|KR · K ′L|

Z(KR ∩ K ′L)DK(id)L
×DG×G ×DK ′(id)R

=
|G|
|KR · K ′L|

Z(KR ∩ K ′L)DKL×K ′R
.

(3.27)

The derivation for the case with factorized topological action is analogous. We remark that the
trivial subgroup domain wall is an example of both factorized and diagonal domain walls. One
can easily check that (3.10) is equal to (3.7) when KR = KL = K ′R = K ′L = 1.

3.2.4 Twisted domain wall: Electric-magnetic duality

To close this section we will show how to compute the fusion and action on gapped boundaries
of twisted domain walls DG×G,α with α ∈ HD−1(G × G, U(1)) a non-trivial and non-factorized
local action. The result depends on the dimension and gauge group.

The derivation of the fusion DG×G,α ×DG×G,α′ and the action DG×G,α ×BK ,β is very similar
to the derivation of DG×G ×DG×G = Z(G)DG×G and DG×G ×BK ,β = Z(K ,β)BG summarized in
Fig. 13 and Fig. 14 respectively. We start with the cellular decomposition of Fig. 4 and Fig. 5,
we perform a gauge transformation to get to temporal gauge and by the flatness condition, the
elements on the right and left are equal. Now, however, the summation over the intermediate
gauge group elements does not give a partition function because the topological action is
partially evaluated on them. The answer depends on the explicit expression for the cocycles
which depends on the dimension and the gauge group.
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g1
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(nL , n)

(m′, mR)

(n′, nR)

DZ2×Z2,α DZ2×Z2,α

v1

v2

v3

v′1

v′2

v′3

=

1

1

1

(mL , m′)

(nL , n′)

(m′, mR)

(n′, nR)

DZ2×Z2,α DZ2×Z2,α

v1

v2

v3

v′1

v′2

v′3

=
(m, m)

(n, n)

DZ(id)2

v1

v2

v3

Figure 15: Derivation of the fusion rule (3.28). The first two figures are related by a
gauge transformation with h⃗(vi) = (1, g−1

i ) ∈ Z2 ×Z2 for all vertices vi in Σ× 0. By
the flatness condition the holonomy of (v1, v2, v′2, v′1, v1) and (v2, v3, v′3, v′2, v2) should
be trivial, which shows that the outer vertical edges have group elements (mL , m′),
(m′, mR), (nL , n′) and (n′, nR). Summing over n′ and m′ with the two topological
actions forces mL = mR = m and nL = nR = n, see (3.32), which corresponds to the
DZ(id)2

= 1 domain wall.

Let us carry this procedure in detail for G = Z2 in D = 3. Because H2(Z2, U(1)) = 1,
this theory has just two gapped boundaries BZ2

(Neumann) and B1 (Dirichlet). However,
H2(Z2 ×Z2, U(1)) = Z2 so we can consider a domain wall twisted by a non-factorized action.
We are going to show that

DZ2×Z2,α2
×DZ2×Z2,α2

= 1 , (3.28)

DZ2×Z2,α2
×BZ2

= B1 , (3.29)

DZ2×Z2,α2
×B1 = BZ2

, (3.30)

where α2 the non-trivial 2-cocycle of H2(Z2 ×Z2, U(1)) = Z2.
Let us start with the derivation of the fusion (3.28), illustrated in Fig. 15. We need to show

that the summation over the middle group elements (that would lead to Z(Z2) in the trivial α
case) gives a delta function δ(mL −mR)δ(nL − nR). To show that we need the explicit form for
the algebraic cocycle α ∈ H2(Z2 ×Z2, U(1)) which has representative:

α(nL , nR, mL , mR) = eπinL mR . (3.31)

For simplicity, let the surface in consideration be a torus. The product of local actions over
2-simplices for a torus with α ∈ H2(G, U(1)) is equal to α(g,h)

α(h,g) for g, h ∈ G. Therefore, in the
configuration of Fig. 15 the total action is

α(nL , n′, mL , m′)α(n′, nR, m′, mR)
α(mL , m′, nL , n′)α(m′, mR, n′, nR)

= eπi(nL m′−mL n′+n′mR−m′nR) , (3.32)

where we used (3.31). If we sum over n′ and m′, then we will get δ(mL −mR)δ(nL − nR) that
forces nL = nR = n and mL = mR = m. We see that the fusion results in DZ(id)2

= 1.

The derivation of the action on the gapped boundaries is very similar and is illustrated in
Fig. 16 for the BZ2

case. We need to show that the summation over the middle group elements
gives the delta function δ(mL)δ(nL). Using again the total action for the torus we have in this
case:

α(nL , n′, mL , m′)
α(mL , m′, nL , n′)

= eπi(nL m′−mL n′) , (3.33)
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v′1

v′2
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=
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Figure 16: Derivation of the action on boundary (3.29). The first two figures are
related by a gauge transformation with h⃗(vi) = (1, g−1

i ) ∈ Z2×Z2 for all vertices vi in
Σ×0. By the flatness condition the holonomy of (v1, v2, v′2, v′1, v1) and (v2, v3, v′3, v′2, v2)
should be trivial, which shows that the outer vertical edges have group elements
(mL , m), m, (nL , n) and n. Summing over n′ and m′ with the topological actions forces
mL = nL = 1, see (3.33), which corresponds to the B1 gapped boundary.

which gives δ(mL)δ(nL) by summing over n′ and m′. We see the action results in B1. The
action of the domain wall on B1 can be derived in the same way. In this case however, the
gauge group elements on the boundary are trivial which trivializes the topological action (3.31)
so the result is the same as the action DZ2×Z2

×B1 = BZ2
. Consistently, we could compute the

action on B1 using the fusion (3.28), the action (3.29) and associativity which gives:

DZ2×Z2,α2
×B1 =DZ2×Z2,α2

×DZ2×Z2,α2
×BZ2

= BZ2
. (3.34)

The only invertible symmetry of Z2 gauge theory is electric-magnetic duality, therefore
DZ2×Z2,α is the electric-magnetic duality symmetry defect. As we are going to show in Sec-
tion 3.3.3, operators with the form DG×G,α with α non-factorized, generically mix invertible
electric operators (2.13) and magnetic defects. Note that the same procedure could be carried
out in higher dimensions and for generic gauge groups.

3.3 Transformation of Wilson lines and magnetic defects

When we move a topological defect across another operator, the operator can be transformed
into another one. In this section, we study the transformation of other operators when they
cross the gapped domain walls.

In the following, we will investigate the transformation of Wilson lines and magnetic defects.
We start discussing which operators can end on untwisted gapped boundaries BK of G gauge
theory. Then, we investigate the action of domain walls on other operators separating the discus-
sion into: untwisted domain walls, DH , and twisted domain walls DH,α with α ∈ HD−1(H, U(1))
a non-factorized action. In the first class of domain walls, the electric and magnetic operators
transform separately, while the second class of domain walls can mix them, and in this sense
generalizes electric-magnetic duality. Similar distinctions are discussed in [10].

In our setup, the transformation is derived from the fact that pairs of Wilson lines and
magnetic defects can be made gauge invariant if they end on the same locus of the domain
wall. We exhibit the collection of all such allowed junctions via the action of the domain wall
on simple Wilson lines and magnetic defects:

DK ,α ·WρR
=
∑

iL∈irrep

ciL
WρiL

, DK ,α ·MgR
=
∑

[gL]∈Cl(G)

cgL
MgL

, (3.35)

with ciL
and cgL

larger than zero if there exists a gauge invariant configuration.
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3.3.1 Untwisted gapped boundaries

As shown in Section 3.1.1, gapped boundaries in untwisted G gauge theory can be constructed
by (K ,α) with K ≤ G and topological action α ∈ HD−1(K , U(1)). Here we restrict to the case
with trivial topological action. The gapped boundary BK associated with the subgroup K ≤ G is
obtained by restricting the gauge group elements on the boundary to be elements of K . From
this definition, it follows that:

• Wilson lines the Wilson line Wρ can end on the gapped boundary BK if the decomposition
of ρ in representations of K contains the singlet. The number of possible junctions is
equal to the multiplicity of the trivial representation in the restriction.

• Magnetic defects the magnetic defect Mg can end on the domain wall if there exists a
group element k ∈ [g] such that k ∈ K . The number of possible junctions is equal to the
number of different conjugacy classes of K of such group elements.

For illustration, consider G = S3 (the symmetric group on 3 elements), the conjugacy class
[(123)]S3

= {(123), (132)}, and the gapped boundary BA3
with A3 = {1, (123), (132)}≤S3

(the alternating group on 3 elements). The magnetic defect M(123) can end on BA3
because

(123), (132) ∈ A3 and the multiplicity in this case is 2 because [(123)]A3
= {(123)} and

[(132)]A3
= {(132)} are different conjugacy classes of A3.

In particular, all Wilson lines can end on B1 with multiplicity equal to the dimension of
the corresponding irreducible representation, and all magnetic defects can end on BG with
multiplicity equal to one.

3.3.2 Untwisted domain walls

Let us begin with the untwisted domain walls DH . For such domain walls, the Wilson lines and
the magnetic defects transform separately:

• Wilson lines the Wilson line WρL
can be transformed into WρR

if the decomposition of
ρL ⊗ρR into representations of H contains the trivial representation. If the decompo-
sition of ρL ⊗ ρR into representations of H contains the trivial representation, then a
configuration with WρL

and WρR
joining on DH can be made gauge invariant. Again, the

coefficient of the trivial representation gives the number of possible junctions.

• Magnetic defects the magnetic defect MgL
can be transformed into MgR

if there exists
a group element (kL , kR) ∈ [gL]× [gR] such that (kL , kR) ∈ H. The number of possible
junctions equals the number of different conjugacy classes of H that such group elements
form.

Let us give some examples to illustrate these transformations.

Example: automorphism domain wall For instance, consider the domain wall that generates
automorphism φ, it corresponds to the subgroup G(φ) = {(φ · g, g) : g ∈ G} ≤ G × G. Let us
consider the transformation of the magnetic defect MgL

into MgR
and the transformation of

Wilson lines WρL
into WρR

.

• The pair of magnetic defects MgL
, MgR

can have a junction on the wall if and only if
φ(gL) = gR, where we extend the action of automorphism on the conjugacy class. In
other words, the magnetic defect associated with the conjugacy class of g transforms
into φ−1(g) after it passes through the domain wall from left to right. Conversely, it
transforms into φ(g) after it passes through the domain wall from right to left. The
multiplicity in this case is one.
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χρ(g) =

Mg Wρ

=

DG(φ)

Mg ′ Wρ′

= χρ′(g ′)

DG(φ)

Mg ′ Wρ′

= χρ′(g ′)

Figure 17: A linked configuration of Wilson line, Wρ and magnetic defect Mg , can be
unlinked and contracted giving the associated character χρ(g). If one nucleates an
ordinary symmetry defect DG(φ) (oriented outwards) and embed the linked pair inside
it, they will be permuted to Wρ′ and Mg ′ (where we assumed that the symmetry is
invertible). Unlinking the permuted pair inside the symmetry defect and contracting
all operators gives the permuted character χρ′(g ′). These topological manipulations
shows that if Wρ 7→Wρ·φ−1 , then Mg 7→ Mφ(g).

• The decomposition of the representation ρL ⊗ρR of G × G into representations of the
subgroup G(φ) contains the trivial representation when ρL = ρR ◦φ−1, where ρR ◦φ−1

is the representation satisfies ρR ◦φ−1(g) = ρR(φ−1 · g) for g ∈ G. In other words, the
Wilson line associated with the representation ρ transforms into ρ ◦φ after it passes
through the domain wall from left to right. Conversely, it transforms into ρ ◦φ−1 after it
passes through the domain wall from right to left.

Using the notation defined in (3.35) the above can be summarized as

DG(φ) ·Wρi
=Wρi◦φ−1 , (3.36)

DG(φ) ·Mg = Mφ(g) , (3.37)

for every irreducible representation ρi and conjugacy class [g]. These transformation properties
are consistent with the fusion of automorphism domain walls (3.3). We remark that the
transformation preserves the Aharonov-Bohm braiding between the Wilson lines and the
magnetic defect, which is given by evaluating the character of the representation of the Wilson
line on the conjugacy class of the magnetic defect. See Fig. 17 for an illustration.

Example: diagonal domain wall with H = 1 Let us consider the domain wall with H = 1.
In this case, every Wilson line can end on the domain wall. In particular, the trivial Wilson
line transforms into the direct sum of all other Wilson lines. An example is G = Z2 in D = 3,
where the domain wall is called the Cheshire string domain wall [64]. No configuration of
nontrivial magnetic defects can end on the domain wall with H = 1. This happens because it is
impossible to fix the holonomy on the simplices of Σ to be an element that is not the identity.
Using the notation defined in (3.35) the above can be summarized as

D1 ·Wρi
=
∑

k∈irreps

didkWρk
, (3.38)

D1 ·Mg = 0 , (3.39)

for every irreducible representation ρi and conjugacy class [g]. Above, di is the dimension
of the irreducible representation ρi. These transformation properties are consistent with the
fusion of diagonal domain walls (3.7).

27

https://scipost.org
https://scipost.org/SciPostPhys.18.1.019


SciPost Phys. 18, 019 (2025)

Example: factorized domain wall with H = G × G This case is complementary to the
previous example. No Wilson line can end and all magnetic defects can. Using the notation
defined in (3.35) the above can be summarized as

DG×G ·Wρi
= 0 , (3.40)

DG×G ·Mg =
∑

[k]∈Cl(G)

Mk , (3.41)

for every irreducible representations ρi and conjugacy class [g]. These transformation proper-
ties are consistent with the fusion of factorized domain walls (3.9).

3.3.3 Twisted domain wall: Electric-magnetic duality

In this section we show how to understand the action of DG×G,α on other operators
with α ∈ HD−1(G × G, U(1)) a non-factorized topological action, i.e., α ̸= αL × αR with
αL ,αR ∈ HD−1(G, U(1)). The underlying mechanism determining the action is reminiscent of
anomaly inflow [83].

As shown in (3.41), all magnetic defects can terminate on DG×G . However, if the domain
wall is decorated with a non-factorized topological action α ∈ HD−1(G×G, U(1)), such junctions
are no longer gauge invariant. Conversely, an invertible electric operator (2.13) cannot end on
DG×G because it is not invariant under gauge transformations. Interestingly, the two effects
can cancel and a configuration with an invertible electric operator ending on the same locus as
a magnetic defect can be made gauge invariant.

Let us illustrate this generic feature using again the simplest example of G = Z2 gauge
theory in D = 3. With no other insertions, the Wilson line W coming from the left of DZ2×Z2,α2

cannot end on a vertex v0 of the domain wall because under a gauge transformation with
parameter h⃗(v0) = (1,0) ∈ Z2 ×Z2 the Wilson line would change to

W (γ)→ eiπ W (γ) . (3.42)

Conversely, consider a local region around v0 and suppose the magnetic defect M comes from
the right and ends on the dual vertex associated with the 2-simplex [v0, v1, v2]. That means
that we should sum over gauge field configurations with g(v0,v1,v2) = (0, 1) ∈ Z2 ×Z2. However,
with no other insertions, in the presence of the topological action this configuration is not
gauge invariant. Under the gauge transformation with h⃗(v0) = (1,0) considered before the
total action in this local region will changes to:

α(0,0, 0,1)α(0, 0,0, 0)2 = 1→ α(1, 0,0, 1)α(1,0, 0,0)2 = eiπ , (3.43)

where we used the explicit form for the algebraic cocycle (3.31). See Fig. 18 for illustration.
We see that a Wilson line and a magnetic defect cannot end on the domain wall in isolation.

However, if the Wilson line ends at a vertex of a simplex dual to the locus of a magnetic defect
(with the framing specified by Figure 18), their variation under gauge transformations cancels,
and the configuration becomes gauge invariant. Using the notation of (3.35) we thus derive:

DZ2×Z2,α2
·W = M , DZ2×Z2,α2

·M =W , (3.44)

confirming that DZ2×Z2,α2
is the electric-magnetic duality symmetry defect.

As already mentioned in Section 3.2.4, this feature, illustrated for G = Z2 in D = 3 is
a generic feature of domain walls with the form DG×G,α and α ∈ HD−1(G × G, U(1)) non-
factorized. Therefore, they generalize electric-magnetic duality to non-abelian groups and
to higher dimensions. In higher dimensions, there are gauge invariant configurations with
the codimension-two magnetic defect and the codimension-two invertible electric operators
defined in (2.13) ending on the same codimension-three locus of the domain wall DG×G,α. For
D = 3 the invertible electric operators of codimension-two are the invertible Wilson lines.
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MW

v1

v0

v2

DZ2×Z2,α

(0,0)

(0,0)(0,1)
M
× (0, 0)

(0, 0) (0,0)
v1 v3

v2

v0

=

(0, 0)

(0, 0)(0, 1)
M
× (1,0)

(1,0) (1, 0)
v1 v3

v2

v0

Figure 18: The first figure shows a configuration with a magnetic defect M and a
Wilson line W ending on the same locus of the domain wall DZ2×Z2,α2

. The other
two figures shows a local slice of DZ2×Z2,α2

around this locus. Because the magnetic
defect M ends on the dual vertex associated with the 2-simplex [v0, v1, v2], we have
g(v0,v1,v2) = (0,1). The presence of the magnetic defect makes the total action to
changes under gauge transformations with h⃗(v0) = (1,0) ∈ Z2 × Z2. This change,
however, is compensated by the change of the open Wilson line ending on v0 coming
from the left. We see that the mechanism determining the action is reminiscent of
anomaly inflow [83].

3.4 Higher codimensional topological operators: Cheshire strings

In the definition of the domain wall DH,α(Σ) with H < G×G and α ∈ HD−1(H, U(1)), a crucial
ingredient is the orientation of the normal bundle NΣ, which gives a consistent global meaning
to the “left” and “right” of the domain wall. Note, however, that diagonal domain walls can be
constructed without this structure, i.e., diagonal domain walls are orientation-reversal invariant
(see Section 3.1). Therefore, it is possible to generalize them to higher codimensional operators.
From an alternative perspective, note that the holonomy of a contractible path crossing Σ
is trivial for a diagonal domain wall (see Fig. 2). This feature suggests that these domain
walls can be constructed as condensations of Wilson lines [100]. Consequently, it is expected
that such domain walls can be generalized to higher codimensional operators through this
construction.

The n-dimensional generalization of diagonal domain walls is classified by:

• Subgroup K ≤ G;

• Topological action αn ∈ Hn(K , U(1)).

Given the data (K ,αn) we define the n-dimensional operator DK ,αn
(Σn) by restricting the gauge

group elements and gauge transformations along the n-dimensional submanifold Σn to be
elements of K and by decorating Σn with the topological action αn ∈ Hn(K , U(1)) as in (2.13).
In D = 3+ 1 and n= 2 these surface defects are discussed in [64].

The fusion rule of higher codimensional diagonal defects can be computed similarly to
(3.7) and gives:

DK ,αn
(Σn)×DK ′,α′n

(Σn) =
|G|
|K · K ′|

DK∩K ′,αn·α′n(Σn) . (3.45)

For G = Z2, and trivial αn, the fusion (3.45) gives D1 ×D1 = 2D1 which is the fusion rule of
Cheshire strings [64,65]. Note that this fusion rule is universal with respect to spacetime and
operator dimension.

We remark that to generalize the domain walls that are not diagonal one would need to
introduce a foliation structure, which is ubiquitous in fracton models (see e.g., [84–88]).
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Table 3: Fusion table for domain walls of G = ZN gauge theory with N prime. Above,
Z(m)N = {(mn, n) : n ∈ ZN} Ã ZN ×ZN and m ∈ Z×N

∼= Aut(ZN ). Note that the fusion
coefficients are decoupled topological quantum field theories on Σ, in particular,
|ZN | = Z0(ZN ,Σ) (see (2.9) and recall that we define domain walls on connected
submanifolds).

Domain walls DZ(m′)N
D1 DZN×ZN

D1×ZN
DZN×1

DZ(m)N
DZ(mm′)

N
D1 DZN×ZN

D1×ZN
DZN×1

D1 D1 |ZN |D1 D1×ZN
|ZN |D1×ZN

D1
DZN×ZN

DZN×ZN
DZN×1 Z(ZN )DZN×ZN

DZN×ZN
Z(ZN )DZN×1

D1×ZN
D1×ZN

D1 Z(ZN )D1×ZN
D1×ZN

Z(ZN )D1
DZN×1 DZN×1 |ZN |DZN×1 DZN×ZN

|ZN |DZN×ZN
DZN×1

4 Examples

In this section, we investigate two examples that have a Lagrangian description: ZN gauge
theory for N prime in arbitrary spacetime dimensions and D4 gauge theory in D = 3. Using
this description, we provide alternative derivations for the lattice results in these specific cases.

4.1 ZN gauge theory

Consider ZN gauge theory with N prime in arbitrary spacetime dimensions. The domain walls
that are universal with respect to dimension are: DZN×ZN

, D1×ZN
, DZN×1, D1 and DZ(m)N

. The

last one is the automorphism domain wall associated with the map that sends n to mn with
m ∈ Z×N . Using the fusion rules derived in Section 3.2 we can write the “fusion table” for these
domain walls which we present in 3.

The ZN gauge theory has N − 1 non-trivial Wilson lines that can be generated by the
representation that maps 1 ∈ ZN to e

2πi
N . We denote the generating Wilson line associated

with this representation by W . Similarly, the theory has N − 1 non-trivial magnetic defects
generated by M , which fixes the holonomy to be 1 ∈ ZN . The transformation properties of
these operators can be computed using the methods presented in Section 3.3 and are:

D1 ·M k = 0 , DZN×ZN
·W k = 0 , (4.1)

DZN×ZN
·M k =

N−1
∑

n=0

M n , D1 ·W k =
N−1
∑

n=0

W n , (4.2)

DZ(m)N
·M k = M mk , DZ(m)N

·W k =W
k
m , (4.3)

where we used the notation of (3.35) and k ∈ ZN except in (4.1) where k ∈ Z×N , and the fact
that m is invertible. For the other factorized domain walls, the Wilson lines can end on the
identity side, and magnetic defects on the ZN side.

In addition, there are domain walls specific to each dimension obtained by attaching a
topological action for the corresponding subgroup. For example, in D = 3 and N = 2, we have
DZ2×Z2,α2

with α2 the non-trivial element of H2(Z2×Z2, U(1)) = Z2. This domain wall squares
to the identity as shown in (3.28) and corresponds to the electric-magnetic duality symmetry
operator as shown in (3.44).
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Table 4: Dictionary between gapped boundaries and boundary conditions in ZN gauge
theory.

Gapped boundary Boundary condition

B1 a = 0

BZN
ã = 0

The ZN gauge theory in arbitrary dimensions can be described by the BF action using two
U(1) gauge fields a(1), ã(D−2) (the superscript denotes the form-degree):

SBF =
iN
2π

∫

M
ã(D−2) ∧ da(1) , (4.4)

with gauge transformations a(1)→ a(1)+ dα(0) and ã(D−2)→ ã(D−2)+ dα̃(D−3). In this formula-
tion, the generating Wilson line and magnetic defects are described by:

W (γ) = exp
�

i

∮

γ

a(1)
�

, M(Γ ) = exp
�

i

∮

Γ

ã(D−2)
�

, (4.5)

with γ a closed loop and Γ a closed (D − 2)-dimensional submanifold. We want to use this
Lagrangian description to give an alternative derivation of the results presented above.

4.1.1 Gapped boundaries and boundary conditions

Consider the action (4.4) in a manifold M with boundary ∂M. To define the theory it is
necessary to choose boundary conditions. A boundary condition in this setup is a condition for
the fields a and ã such that there is no surface term in the variation of the action. The bulk
equations of motion are standard and imply that all gauge fields are closed. Meanwhile, the
boundary term in the variation of the action (4.4) is:

δSBF =
iN
2π

∫

∂M
ã(D−2) ∧δa(1) . (4.6)

There are two boundary conditions for the fields a and ã such that δSBF = 0 which corresponds
to the two subgroups of ZN with N prime (the trivial and the whole group). The dictionary is
summarized in Table 4.

4.1.2 Domain walls and boundary conditions

To make contact with our lattice construction of domain walls we first divide spacetime into
left and right regions M =ML ∪MR with a common boundary ∂ML = −∂MR = Σ. The
total action in this setup is

SBF =
iN
2π

∫

ML

ã(D−2)
L ∧ da(1)L +

iN
2π

∫

MR

ã(D−2)
R ∧ da(1)R , (4.7)

and one needs to specify boundary conditions on Σ. The bulk equations of motion are standard
and imply that all gauge fields are closed. Meanwhile, the boundary term in the variation of
the action (4.7) is:

δSBF =
iN
2π

∫

Σ

(ã(D−2)
L ∧δa(1)L − ã(D−2)

R ∧δa(1)R ) . (4.8)
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Table 5: Correspondence between domain walls and boundary conditions for ZN
gauge theory.

Domain wall Boundary condition

DZ(m)N
aL = maR and mãL = ãR

D1 aL = aR = 0

DZN×ZN
ãL = ãR = 0

D1×ZN
aL = ãR = 0

DZN×1 ãL = aR = 0

There is a correspondence between boundary conditions and domain walls that we summarize
in Table 5. The boundary conditions in Table 5 give the exhaustive set of conditions for the
fields such that δSBF = 0, and correspond to the domain walls that are universal with respect
to dimension.

There are other classes of boundary conditions that arise by adding a boundary action term.
Because these terms depend on the dimension, these boundary conditions are specific to each
dimension and correspond to the twisted domain walls. For simplicity, consider N = 2, D = 3
and the boundary action:

Sα2
=

i
π

∫

Σ

a(1)L ∧ a(1)R . (4.9)

With this additional boundary interaction term for a(1)L and a(1)R , the variation of the total action
becomes:

δ(SBF + Sα2
) =

i
π

∫

Σ

�

(ã(1)L − a(1)R )∧δa(1)L + (a
(1)
L − ã(1)R )∧δa(1)R

�

, (4.10)

enabling the additional boundary condition with ã(1)L = a(1)R and a(1)L = ã(1)R onΣ. This boundary
condition corresponds to the electric-magnetic duality domain wall DZ2×Z2,α2

where α2 is the
non-trivial element of H2(Z2 ×Z2, U(1)) = Z2.

More generally, the domain wall DZN×ZN ,αD−1
associated with an element of

αD−1 ∈ HD−1(ZN ×ZN , U(1)) corresponds to a boundary condition that is enabled by adding
the corresponding boundary action term constructed from aL and aR. The non-factorized
terms, such as (4.9), give boundary conditions that relate the a(1) and b(D−2) fields on the
two sides which implies that they transform electric into magnetic operators and generalize
electric-magnetic duality. For example, in D = 4 we have H3(Z2 ×Z2, U(1)) = Z2 ×Z2 ×Z2.
The boundary condition that corresponds to the domain wall associated with the non-factorized
element of this cohomology group is b(2)L = da(1)R and da(1)L = b(2)R , which is enabled by the
boundary action:

Sα3
=

i
2π

∫

Σ

a(1)L ∧ da(1)R . (4.11)

As we are going to show, this domain wall is non-invertible. The other two generators of
H3(Z2 ×Z2, U(1)) correspond to the boundary conditions b(2)L = da(1)L and da(1)R = b(2)R , which
are enabled by the boundary actions with aL ∧ daL and aR ∧ daR respectively. These other
choices do not permute electric and magnetic objects, instead, the magnetic object decorated
with the invertible electric operator 2.13 can end on it.
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4.1.3 Fusion rules

Here we provide an alternative derivation of the fusion rules (3.3), (3.7) and (3.9) for the
G = ZN case. Then, we rederive (3.28) and its generalization to D = 4.

Automorphism domain wall The domain wall DZ(m)N
(Σ) corresponds to the boundary condi-

tion:

DZ(m)N
(Σ) : a(1)L

�

�

�

Σ
= ma(1)R

�

�

�

Σ
, mã(D−2)

L

�

�

�

Σ
= ã(D−2)

R

�

�

�

Σ
. (4.12)

To compute the fusion rule DZ(m)N
×DZ(m′)N

we can bring two such parallel surfaces on top of

each other. We denote the gauge fields on the left, middle, and right layer by aL , ãL , aM , ãM ,
and aR, ãR respectively. Somewhat trivially, the boundary conditions combine: aL = maM &
aM = m′aR⇒ aL = mm′aR and mãL = ãM & m′ãM = ãR⇒ mm′ãL = ãR so that

DZ(m)N
(Σ)×DZ(m′)N

(Σ) : a(1)L

�

�

�

Σ
= mm′a(1)R

�

�

�

Σ
, mm′ã(D−2)

L

�

�

�

Σ
= ã(D−2)

R

�

�

�

Σ
, (4.13)

which is the boundary condition for DZ(mm′)
N

. Note that there is no remnant degrees of freedom

to sum over, this is in contrast with the next two cases. We conclude that

DZ(m)N
×DZ(m′)N

=DZ(mm′)
N

, (4.14)

which is consistent with (3.3).

Diagonal domain wall The domain wall D1(Σ) corresponds to having Dirichlet boundary
condition for aL and aR along Σ:

D1(Σ) : a(1)L

�

�

�

Σ
= a(1)R

�

�

�

Σ
= 0 . (4.15)

This boundary condition results in trivial holonomy for loops on Σ. This is also the case for
D1(Σ) as illustrated in Fig. 2. From the method presented for the automorphism domain wall,
it is clear that D1 ×D1 should be proportional to itself because aL = aM = aR. The difference
in this case, is that ã(D−2)

M is a remant degree of freedom along Σ that we should sum over. This
gives the fusion coefficient Z0(ZN ,Σ) = |ZN |.

To see this more explicitly, instead of defining the domain walls by imposing the boundary
conditions, we are going to add scalar fields with suitable gauge transformations to cancel the
variation of the total action. These fields are sometimes referred to as Stueckelberg scalars,
see e.g., [7,89] and the mechanism is somewhat analogous to anomaly inflow. Here, we will
generalize in dimension the presentation of section 6.3.4 of [90] which we refer to for further
details.5 The Dirichlet boundary condition for aL and aR can be implemented by the boundary
action:

D1(Σ) : −
iN
2π

∫

Σ

φ(0)d(ã(D−2)
L − ã(D−2)

R ) , (4.16)

with φ(0) the Stueckelberg scalar field with gauge transformation φ(0)→ φ(0) +α(0) with α(0)

the gauge transformation of the a fields. One can check that the total action is gauge invariant
and, by integrating out ã, that a is pure gauge on Σ.

5In their analysis, the bulk action has the form a(1)L ∧ dã(D−2)
L which is related to (4.7) by the boundary term

a(1)L ∧ ã(D−2)
L under integration by parts. So we assume implicitly here that we added this boundary terms to get to

their convention.
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To compute the fusion rule of D1 with itself we can bring two such parallel surfaces on top
of each other. We denote the gauge fields on the left, middle, and right layer by aL , ãL , aM , ãM ,
and aR, ãR respectively, and we denote the two Stueckelberg scalar fields by φ1 and φ2. The
worldsheet action for the fusion is

D1(Σ)×D1(Σ) : −
iN
2π

∫

Σ

�

−φ(0)dã(D−2) +φ(0)2 (dã(D−2)
L − dã(d−2

R )
�

, (4.17)

with φ(0) = φ(0)1 −φ
(0)
2 and ã(D−2) = ã(D−2)

M − ã(D−2)
L . The first term is the 0-form partition

function for a decoupled scalar, i.e., Z0(ZN ,Σ) = |ZN |, and the second term is another copy of
the surface defect D1(Σ). We conclude that

D1 ×D1 = |ZN |D1 , (4.18)

which is consistent with expression (3.7). We see that the prefactor, which we derived before
by summing over the intermediate holonomies, can be interpreted, in the abelian case, as the
partition function for a decoupled scalar.

Factorized domain wall The domain wall DZN×ZN
(Σ) corresponds to having Dirichlet bound-

ary condition for ãL and ãR:

DZN×ZN
(Σ) : ã(D−2)

L

�

�

�

Σ
= ã(D−2)

R

�

�

�

Σ
= 0 . (4.19)

The result of this boundary condition is that the components of daL and daR that are perpen-
dicular to Σ are not set to zero after integrating out ãL and ãR, therefore, the holonomy for
contractible paths that cross Σ is not trivial. This is also the case for DZN×ZN

(Σ) as illustrated in
Fig. 2. In this case, the combination of boundary conditions gives ãL = ãM = ãR and it remains
to sum over a(1)M along Σ, which gives the fusion coefficient Z(ZN ,Σ).

We can see this more explicitly by following the same derivation as outlined before. In this
case, we don’t add the boundary term a(1)L ∧ ã(D−2)

L and the Dirichlet boundary condition for ãL
and ãR is equivalent to the boundary action:

DZN×ZN
(Σ) : −

iN
2π

∫

Σ

φ(D−3)d(a(1)L − a(1)R ) , (4.20)

with φ(D−3) the Stueckelberg scalar field with gauge transformation φ(D−3)→ φ(D−3) − α̃(D−3)

with α̃(D−3) the gauge transformation of the field ã(D−2). One can check that the total action is
gauge invariant and, by integrating out a, that ã is pure gauge on Σ. The fusion in this case
leads to:

DZN×ZN
(Σ)×DZN×ZN

(Σ) : −
iN
2π

∫

Σ

�

−φ(D−3) ∧ da(1) +φ(D−3)
2 ∧ (da(1)L − da(1)R )

�

, (4.21)

with φ(D−3) = φ(D−3)
1 −φ(D−3)

2 and a(1) = a(1)M −a(1)L . The first term is now the partition function
Z(ZN ,Σ), and the second term is another copy of the surface defect DZN×ZN

. We conclude that

DZN×ZN
×DZN×ZN

= Z(ZN )DZN×ZN
, (4.22)

which is consistent with (3.9).
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Electric-magnetic duality domain wall in D = 3
The electromagnetic duality that exchanges the electric and magnetic particles (see e.g.

[91,92]) corresponds to the domain wall DZ2×Z2,α2
(Σ) correspond to the boundary conditions:

DZ2×Z2,α2
(Σ) : a(1)L

�

�

�

Σ
= ã(1)R

�

�

�

Σ
, ã(1)L

�

�

�

Σ
= a(1)R

�

�

�

Σ
. (4.23)

that are enabled by the boundary action (4.9). Similarly to the automorphism fusion we have:

DZN×ZN ,α2
(Σ)×DZN×ZN ,α2

(Σ) : a(1)L

�

�

�

Σ
= a(1)R

�

�

�

Σ
, ã(1)L

�

�

�

Σ
= ã(1)R

�

�

�

Σ
. (4.24)

which is the boundary condition for DZid
2
= 1. Importantly combining the boundary actions

leads to:

Sα2,L + Sα2,R =
i
π

∫

Σ

a(1)L ∧ a(1)M +
i
π

∫

Σ

a(1)M ∧ a(1)R . (4.25)

Integrating out aM simply reproduces the relation aL = aR. We conclude that:

DZ2×Z2,α2
×DZ2×Z2,α2

= 1 , (4.26)

which is (3.28).

Non-invertible electric-magnetic duality domain wall in D = 4 Consider a generalization
of the previous defect to D = 4 corresponding to the boundary condition:

DZ2×Z2,α3
(Σ) : da(1)L

�

�

�

Σ
= ã(2)R

�

�

�

Σ
, ã(2)L

�

�

�

Σ
= da(1)R

�

�

�

Σ
, (4.27)

that is enabled by adding the boundary action (4.11). Now, in the fusion we get daL = daR

and ã(2)L = ã(2)R which is not the identity boundary condition. The aL and aR gauge fields on
the two sides after the fusion can differ by a Z4 gauge field, instead of being identically equal.
The domain wall is non-invertible.

4.1.4 Transformation of Wilson lines and magnetic defects

One way to derive the correspondence between the boundary conditions and the domain walls
of Table 5 is by the transformations of other operators. Conversely, given the correspondence,
we can check the transformation of other operators using the boundary conditions.

Untwisted domain walls Here, we derive the transformation property (3.37) for G = ZN
from the boundary condition aL = maR and mãL = ãR. Consider a path γ = γL + γR on M that
cross Σ with γL in ML and γR on MR such that ∂ γL = −∂ γR = v1 − v0 with v1 and v0 vertices
on Σ. Then, WL(γL)W m

R (γR) is gauge invariant because

WL(γL)W
m
R (γR)→ exp
� i
π

∫

γL

a(1)L + dα(0)L +
im
π

∫

γR

ã(1)R + dα(0)R

�

=WL(γL)W
m
R (γR) , (4.28)

where we used
∫

γL

dα(0)L +m

∫

γR

dα(0)R = α(0)L (v1)−mα(0)R (v0) +mα(0)R (v1)−α
(0)
L (v1) = 0 , (4.29)
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W W
1
m

W W
1
m

v1

v0

v2

DZ(m)N

= W
2
mW 2

v1

v0

v2

DZ(m)N

Figure 19: Derivation of the transformation of W 2 on DZ(m)N
from the transformation

of W . By moving the two independent configurations we can fuse them independently
on each side.

which follows from the boundary condition α(0)L |Σ = mα(0)R |Σ. We conclude that

DZ(m)N
·W =W

1
m , (4.30)

which is consistent with (3.37). The transformation of the other Wilson lines and magnetic
defects can be obtained similarly. Complementarily, they can also be obtained by fusion, see
Fig. 19 for illustration.

The fact that Wilson lines and magnetic defects can end on the side with Dirichlet boundary
conditions for a and ã respectively is even easier to derive. For example, suppose we have
a(1)L |Σ = 0 and consider a path γL such that ∂ γL = v1 − v0 with v1 and v0 vertices on Σ. Then,
under a gauge transformation we will have

W (γL)→ exp

�

i
π

∫

γL

dα(0)L

�

W (γL) = exp
�

α
(0)
L (v1)−α

(0)
L (v0)
�

W (γL) =W (γL) , (4.31)

where we used the boundary condition α(0)L |Σ = 0. The same argument works for a(1)R |Σ = 0
and for magnetic defects on the domain walls with Dirichlet boundary conditions for ã(D−2).
These results are consistent with the transformation properties of Wilson lines and magnetic
defects for the other untwisted domain walls.

Twisted domain walls Similarly to the automorphism domain wall derivation, the boundary
conditions ã(1)L = a(1)R and a(1)L = ã(1)R implies:

DZ2×Z2,α2
·M =W , DZ2×Z2,α2

·W = M . (4.32)

There is, however, a complementary point of view to understand this result which uses the
analysis of twisted Z2×Z2 gauge theory in D = 2 from [7,93]. This theory can be described by
the action:

SZ2×Z2,α2
=

i
π

∫

Σ

(ã(0)L ∧ da(1)L + ã(0)R ∧ da(1)R + a(1)L ∧ a(1)R ) , (4.33)

where ãL and ãR are 2π-periodic scalars and the system has gauge symmetry:

a(1)L → a(1)L + dα(0)L , a(1)R → a(1)R + dα(0)R , b(0)L → b(0)L −α
(0)
R , b(0)R → b(0)R −α

(0)
L . (4.34)
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In this theory the local magnetic defects ML(vi) = eiãL(vi) and MR(vi) = eiãR(vi) are not gauge in-
variant. Instead, the gauge-invariant operators are ML(vi)WR(γ)ML(v j), and MR(vi)WL(γ)MR(v j)
with γ an open path with endpoints vi and v j . If we extend γ to the bulk and view ML(vi) and
MR(v j) as the endpoints of a bulk magnetic operator, we again confirm the transformation
(4.32).

4.2 D4 gauge theory

Consider the gauge theory for the Dihedral group of order 8 in D = 3. This theory is equivalent
to twisted Z2 ×Z2 ×Z2 gauge theory and can be described by the action:

SD4
=

i
π

∫

M

�

a ∧ dã+ b ∧ d b̃+ c ∧ dc̃ +
1
π

a ∧ b̃ ∧ c
�

, (4.35)

with a, ã, b, b̃, c, c̃ one-form U(1) gauge fields with correlated gauge transformations such that
the action is gauge invariant on closed manifolds. Integrating out b̃ forces 1

πa ∧ c = d b, which
describes the extension of Z2 ×Z2 by Z2 with the 2-cocycle given by a ∧ b. The equivalence
with D4 gauge theory is discussed in [94–96].

As in the other examples, we divide spacetime into left and right regions M=ML ∪MR
with a common boundary ∂ML = −∂MR = Σ with opposite orientation. The total action is
(4.35) with fields defined on a left and right part, which we denote with the subscripts L and R
as we have done in (4.7). In general, different boundary conditions correspond to different
domain walls.

4.2.1 Diagonal fusion rule

Here we provide an alternative derivation of the fusion rule (3.7) for the G = D4 case. The
domain wall D1(Σ) corresponds to having Dirichlet boundary condition for a, b, c along Σ:

D1(Σ) : aL

�

�

�

Σ
= aR

�

�

�

Σ
= bL

�

�

�

Σ
= bR

�

�

�

Σ
= cL

�

�

�

Σ
= cR

�

�

�

Σ
= 0 . (4.36)

The result of this boundary condition is that the holonomy for loops on Σ are always trivial
which is also the case for D1(Σ) as illustrated in Fig. 2. In complete analogy with the ZN
example, this boundary condition can be implemented by having Stueckeelberg scalar fields
φa, φb and φc along Σ. Similar manipulations, then yield three decoupled scalars that make a
prefactor equal to 23 = |D4|. We see that in this non-abelian example, the pre-factor can also
be interpreted as the partition function for decoupled scalars.

4.2.2 Non-invertible electric-magnetic duality

The possible topological actions for the subgroup H = D4 × D4 ≤ D4 × D4 are classified by
H2(D4 × D4, U(1)) = Z2 × Z2 (see [97] for the group cohomology of Dihedral groups). In
the theory with b̃ integrated out, the domain wall DD4×D4,(n,m)(Σ) (here (n, m) ∈ Z2 × Z2 )
corresponds to the boundary condition:

DD4×D4,(n,m)(Σ) : ãL

�

�

�

Σ
= ncR

�

�

�

Σ
, naL

�

�

�

Σ
= c̃R

�

�

�

Σ
, ãR

�

�

�

Σ
= mcL

�

�

�

Σ
, maR

�

�

�

Σ
= c̃L

�

�

�

Σ
. (4.37)

which is enabled by adding the boundary action:

S(n,m) =
in
π

∫

Σ

aL ∧ cR +
im
π

∫

Σ

cR ∧ bL . (4.38)
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This correspondence means that the boundary condition in (4.37) solves δ(SD4
+ S(n,m)) = 0,

where SD4
is (4.35) with spacetime divided into left and right regions as in (4.7). Note that

in the theory with b̃L and b̃R integrated out aL ∧ cL and aR ∧ cR are exact, but not aL ∧ cR and
aR ∧ cL , which is what appears in (4.38).

Fusion rules To compute the fusion rule of DD4×D4,(n,m), instead of imposing the boundary
conditions, we will add Stueckelberg fields to make the total action gauge invariant. Let us
compute the fusion rule of two such domain walls by dividing the spacetime into the left,
middle, and right. The boundary action (4.38) combines into S(n1,m1),L + S(n1,m1),R:

n1i
π

∫

aL ∧ cM +
m1i
π

∫

aM ∧ cL +
n2i
π

∫

aM ∧ cR +
m2i
π

∫

aR ∧ cM . (4.39)

Additionally, integrating out the Lagrange multiplier field associated with the condition that
aM ∧ cM is exact on Σ generates:

1+ exp

�

i
π

∫

Σ

aM ∧ cM

�

. (4.40)

The fusion outcome is different for the two terms in (4.40). For the first term, integrating out
aM and cM leads to n1aL = m2aR and m1cL = n2cR. For the second term, integrating out aM
and cM leads to

i
π

∫

(n1aL +m2aR)∧ (m1cL + n2cR) =
n1n2i
π

∫

aL ∧ cR +
m1m2i
π

∫

aR ∧ cL , (4.41)

where the equality used aL ∧ cL and aR ∧ cR being exact. The above corresponds to the domain
wall DD4×D4,(n1n2,m1m2)(Σ).

We conclude that the domain wall is non-invertible and we have, for example:

DD4×D4,(1,1) ×DD4×D4,(1,1) = 1+DD4×D4,(1,1) . (4.42)

This fusion rule is strikingly similar to that of the Fibonacci anyons in D = 3 TQFTs [98]. The
key difference is that our domain wall is higher dimensional.

Transformation of other operators The theory has four non-trivial Wilson lines, four non-
trivial magnetic defects, and thirteen non-trivial Dyons. With the trivial line, this makes up a
total of 22 operators [99]. Among them, we have:

Wa(γ) = ei
∫

γ
a , Wc(γ) = ei

∫

γ
c , Ma(γ) = ei

∫

γ
ã , Mc(γ) = ei

∫

γ
c̃ , (4.43)

where we used a local polarization to write the magnetic defects without a bounding surface [34].
From the boundary conditions (4.37) associated with the domain wall DD4×D4,(1,1)(Σ), we can
follow the procedure used in the derivation of (4.30) to find:

DD4×D4,(1,1) ·Ma =Wc + . . . DD4×D4,(1,1) ·Wc = Ma + . . . , (4.44)

confirming that DD4×D4,(1,1) is the symmetry defect that implements an electric-magnetic duality.
From the two configurations displayed above, and provided the fusion rule Ma ×Wc = Ma we
can derive:

DD4×D4,(1,1) ·Ma = Ma +Wc , (4.45)

which is consistent with the Fibonacci fusion rule 4.42. See Fig. 20 for an illustration.
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Wc Ma

Ma Wc

v1

v0

v2

DD4×D4,α

= MaMa

v1

v0

v2

DD4×D4,α

Figure 20: Derivation of (4.45) from the gauge invariant configurations (4.44) and the
fusion rule Ma ×Wc = Ma. In the figure, we fused Ma and Wc on both sides. The fact
that there exists a gauge invariant configuration with Ma makes the transformation
consistent with the Fibonacci fusion rule (4.42).
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